Share:


Operational experience of GNSS receivers with Chip Scale Atomic Clocks for baseline measurements

Abstract

Currently, one of the topical issues of improving GLONASS system is modernization of its uniformity measurement equipment, including RF measurement equipment and electronic length measurement equipment. To this end, at the Spatial Reference Proving Ground of theSiberian State University of Geosystems and Technologies (SSUGT), the authors of this article carried out a successful experiment to measure a short GNSS baseline by receivers equipped with Chip Scale Atomic Clocks (CSACs) with instability of 10−11 showed that the mean deviation between the slant distance (D) measured using GNSS receivers connected to CSACs and their certified value varied in the range of 0.1–2.5 mm, with the average value of 0.9 mm. The mean deviation obtained using GNSS geodetic receivers not connected to CSAC and their certified value made up 9.4 mm.


The obtained experimental results suggest that substitution of quartz frequency generators with temperature compensation used in geodetic GNSS receivers for Chip Scale Atomic Clocks in any metrological or verification kit increases accuracy and reliability of short baselines measurements results, which highly perspective in view of development of techniques for creating reference baselines with a reproduction error of unit length of about 1 mm per 1 km.


The above-mentioned experiment opens up new horizons for the use of Chip Scale Atomic Clocks in such fields of science as metrological support of geodetic equipment, geodesy, etc.

Keyword : GNSS, receiver, Chip Scale Atomic Clock, accuracy of measurements

How to Cite
Karpik, A. P., Kosarev, N. S., Antonovich, K. M., Ganagina, I. G., & Timofeev, V. Y. (2018). Operational experience of GNSS receivers with Chip Scale Atomic Clocks for baseline measurements. Geodesy and Cartography, 44(4), 140-145. https://doi.org/10.3846/gac.2018.4051
Published in Issue
Dec 31, 2018
Abstract Views
827
PDF Downloads
528
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Antonovich, K. M., & Kosarev, N. S. (2012). Metod kontrolya kodovykh i fazovykh psevdodal’nostey v prostranstve koordinat [Control method for code and phase pseudoranges in the coordinate space]. Izvestiyaa vuzov, Geodeziya i aerofotos’yomka, 2(1), 11-15.

Antonovich, K. M., & Kulikova, L. G. (2017). Etalonnomu prostranstvennomu poligonu SGUGiT 20 let. [The spatial reference proving ground of the Siberian State University of geosystems and technologies is 20 years old]. Proc. of Interekspo and Geo-Sibir’ Congress, 1(2), 107-112.

Antonovich, K. M., Kosarev, N. S., & Lipatnikov, L. A. (2014). Kontrol’ fazovykh izmereniy GNSS-priyemnika s atomnymi chasami [Control of phase measurements of a GNSS receiver with atomic clock]. Vestnik SGGA, 3(27), 3-21.

Antonovich, K. M., & Strukov, A. A. (2010). Sravneniye rezultatov lineynykh izmereniy, vypolnennykh sputnikovymi i traditsionnymi metodami geodezii [Comparison of Results of Linear Measurements Performed by Satellite- and Traditional Methods of Geodesy]. Geo-Sibir’ Journal, 1(3), 38-42.

Antonovich, K. M., & Kosarev, N. S. (2014, April 14-15). Future challenges of the small atomic oscillators used in GNSS monitoring systems for structures and natural objects. In International Workshop workshop “Integration of point and area-wise geodetic monitoring for structures and natural objects”, SGGA, Novosibirsk, Russian Federation (pp. 220-222).

Beard, K., & Senior, R. (2017). Clocks. In Springer handbook of global navigation satellite systems (pp 121-164). Springer. https://doi.org/10.1007/978-3-319-42928-1_5

Chan, F. C., Joerger, M., Khanafseh, S., Pervan, B., & Jakubov, O. (2014). Reducing the Jitters: How a Chip-Scale Atomic Clock can help mitigate broadband interference. GPS World, 5, 44-50.

Denisenko, O. V., Sil’vestrov, I. S., Fedotov, V. N., Kaverin, A. M., Pecheritsa, D. S., Voronov, V. L., Ryabov, I. V., & Zavgorodniy, A. S. (2016). Razvitiye sredstv metrologicheskogo obespecheniya kak osnova dlya povysheniya tochnostnykh kharakteristik sistemy GLONASS [Development of metrological support tools as a basis for increasing the accuracy characteristics of GLONASS system]. Mir izmereniy Journal, 3, 13-17.

Enric, F., Calero, D., & Parés, M. E. (2017). CSAC Characterization and its impact on GNSS Clock Augmentation Performance. Sensors, 17(2), 370. https://doi.org/10.3390/s17020370

Federal’nyy Zakon No. 102. “Ob obespechenii yedinstva izmereniy” [Federal Law No. 102 “On ensuring the uniformity of measurements”, adopted by the State Duma on June 11, 2008] (2008). Retrieved from http://www.consultant.ru/document/cons_doc_LAW_77904/

Federal’noe agentstvo geodezii i kartografii Rossii, FGUP “Tsentral’nyy ordena ‘Znak Pocheta’ nauchno-issledovatel’skiy institut geodezii, aeros’’emki i kartografii im. F. N. Krasovskogo”. (2005). Bazisy lineynyye etalonnyye. Obshchiye tekhnicheskiye trebovaniya (SТО 02570823-19-05). [Linear Standard Bases. General Technical Requirements (SТО 02570823-19-05)]. Moscow: TSNIIGAiK. 42 p.

Firma G.F.K. (n.d.). Leica Nova TS60 I. Retrieved from https://www.gfk-leica.ru/katalog/taheometry/taheometry_leica_serii_nova/nova_ts60i_05/

Karpik, A. P., Seredovich, V. A., Antonovich, K. M., & Kulikova, L. G. (2010). Etalonnyy geodezicheskiy poligon SGGA – unikal’nyy ob’yekt sistemy obrazovaniya RF [The reference geodetic range of SSGA is a unique object of the RF education system]. Geo-Siberia Journal, 5(2), 180-184.

Kitching, J. (2007). Time for a better receiver: Chip-Scale Atomic frequency. GPS World, 11, 52-57.

Kopeikin, S. M., Kanushin, V. F, Karpik, A. P., Tolstikov, A. S., Gienko, E. G., Goldobin D. N., Kosarev, N. S., Ganagina, I. G., Mazurova, E. M., Karaush, A. A., & Hanikova, E. A. (2016). Chronometric measurement of orthometric height differences by means of atomic clocks. Gravitation and Cosmology, 22(3), 234-244. https://doi.org/10.1134/S0202289316030099

Krawinkel, T., & Schön, S. (2015, September 14-18). Benefits of Chip Scale Atomic Clocks in GNSS applications. In Proceedings of the 28th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION), Tampa, FL, USA, (pp. 2867-2874).

Programma “Tsifrovaya ekonomika Rossiyskoy Federatsii” [The program “Digital Economy of the Russian Federation”]. Approved by the order of the Government of the Russian Federation of July 28, 2017. (2017). Retrieved from http://static.government.ru/media/files/9gFM4FHj4PsB79I5v7yLVuPgu4bvR7M0.pdf/

Ruknar. (n.d.). Standart chastoty rubidiyevyy CH1-1012 [Rubidium Frequency Standard Ch1-1012]. Retrieved from http://ruknar.ru/ prod/datach1-1012.pdf

Seredovich, V. A., & Suchkov, I. O. (2014). Ob opyte issledovaniya sposoba izmereniya rasstoyaniy v kombinatsiyakh na etalonnom bazise [On experience of studying different method of measuring distances based on a standard basis]. Izvestiya vysshikh uchebnykh zavedeniy. Geodeziya i aerofotos’yemka Journal, S4, 62-66.

Shchipunov, A. N., Tatarenkov, V. M., Denisenko, O. V., Sil’vestrov, I. S., Fedotov, V. N., Vasil’ev, M. Yu., & Sokolov, D. A. (2015). A set of standards for support of the uniformity of measurements of length in the range above 24 m: current state and prospects for further development. Measurement Techniques, 57(11), 1228-1232. https://doi.org/10.1007/s11018-015-0610-9

Shkel, A. M. (2011). Microtechnology comes of age. GPS World, 9, 11-15.

Sil’vestrov, I. S., Mazurkevich, A. V., Vernitskiy, D. M., Sokolov, D. A., & Golub, D. A. (2016). Gosudarstvennyy pervichnyy spetsial’nyy etalon yedinitsy dliny v diapazone ot 24 m do 4000 km [State primary special standard of length units in the range from 24 m to 4000 km]. Geoprofi: nauchno-tekhnicheskiy zhurnal po geodezii, kartografii i navigatsii, 2, 21-25.

Surnin, Y. V. (2004). Polevoy astrogravigeodezicheskiy etalon dlya metrologicheskikh ispytaniy geodezicheskoy apparatury [Field astro-gravi-geodesic standard for metrological testing of geodetic equipment]. Izmeritel’naya tekhnika Journal, 9, 3-7.