School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Iran / Department of Geodesy, Faculty of Geodesy and Geomatics Engineering, K.N. Toosi University of Technology,Tehran, Iran
School of Surveying and Geospatial Engineering, College of Engineering, Center of Excellence in Surveying Engineering and Disaster Prevention, University of Tehran, Iran
The calibration of satellite radar altimetry has been extremely important for altimetry community and studying sea level changes. The main purpose of this contribution is to provide ongoing absolute calibration of altimeter bias near the Southern seas of Iran using the Iranian tide gauge network that equipped with GPS receivers to measure the sea surface heights synchronously in the same geocentric reference frame as the corresponding altimetry records. The sea level time series of coastal tide gauges have been used to estimate the bias, drift and annual/semiannual constituents of altimeter range measurements using (i) linear regression and (ii) combination of linear regression and harmonic analysis. To this end, three Iranian tide gauges located at Bushehr, Bandar Abbas and Chahbahar ports as well as Geophysical Data Records (GDR) products of Topex/Poseidon, Jason-1and Jason-2 have been considered. The numerical results have indicated that the mean absolute biases of Topex/Poseidon, Jason-1 and Jason-2 are about –26.23, 120.21 and 205.17 mm, respectively. The reliability of method has been assessed via GPS vessel at the altimeter bin nearby the Bushehr tidal stations. The presented method is viable to perfectly estimate the systematic errors, and as such, it can address the demands of high-accurate applications.
Jazireeyan, I., & Ardalan, A. A. (2017). Absolute calibration of satellite altimetry using linear regression and harmonic analysis. Geodesy and Cartography, 43(3), 83-91. https://doi.org/10.3846/20296991.2017.1376441
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in Geodesy and Cartography as Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECH to make alternative agreements.