Share:


Optimization procedures for Topological Tasks

    Jonas Skeivalas Affiliation

Abstract

The paper analyzes the case of mathematical procedures. An appropriate minimizing function is used for solving optimization tasks. In some cases, for example dealing with tasks of topological transformation, the applied minimizing function has no point of minimum. For this reason, an answer to estimating the function of minimization is ambiguous, and thus we have an endless number of answers. In this case, the used genetic algorithm solves task with the help of the iteration method calculating the values of parameters considering the least deviations from nominal values. The article presents the theoretical analysis of establishing the negation of the minimum of the optimization function (solution ambiguity), when topological transformations are applied for optimizing land parcel borders drawn in cadastral maps.

Article in Lithuanian.

Apie optimizavimo procedūras topologiniuose uždaviniuose

Santrauka. Nagrinėjamas matematinių procedūrų atvejis, kai sprendžiant optimizavimo uždavinius taikoma atitinkama minimizavimo funkcija. Atliekant kai kurias procedūras, pvz., topologinių transformacijų uždaviniuose, taikoma minimizavimo funkcija neturi minimumo taško, todėl funkcijos minimizavimo nustatymo sprendinys yra nevienareikšmis, t. y. turime begalinį sprendinių skaičių. Tokiu atveju taikomas genetinis algoritmas sprendžia uždavinį iteraciniu metodu, apskaičiuodamas parametrų reikšmes pagal mažiausiuosius nuokrypius nuo nominaliųjų reiksmių. Straipsnyje pateikiama teorinė analizė, kaip nustatoma, kad neegzistuoja optimizavimo funkcijos minimumas (sprendinio daugiareikšmiškumas), kai žemės sklypų plotų riboms optimizuoti kadastro žemėlapiuose taikomos topologijos transformacijos.

Reikšminiai žodžiai: optimizavimastopologijakadastro žemėlapisgenetinis algoritmasiteracija.

Процедуры оптимизации в топологических задачах

Резюме. Рассматривается вариант математических процедур, когда при решении задач оптимизации используется соответствующая функция минимизации. В некоторых процедурных вариантах, напр., в задачах топологических трансформаций используемая функция минимизации не имеет точки минимума. Поэтому решение определения минимизации функции является неоднозначным, т. е. имеет бесконечное число решений. Используемый в таких задачах генетический алгоритм решает задачу итерационным методом и вычисляет значения соответствующих параметров по наименьшим отклонениям от номинальных значений. В статье представлен теоретический анализ для принятия заключения о том, что функция оптимизации не имеет минимума (решение многозначно) в случаях, когда для оптимизации рубежей земельных участков применяются топологические трансформации.

Ключевые слова: оптимизациятопологиякадастровая картагенетический алгоритмитерация.

Keyword : optimization, topology, cadastral map, genetic algorithm, iteration

How to Cite
Skeivalas, J. (2012). Optimization procedures for Topological Tasks. Geodesy and Cartography, 37(4), 159-160. https://doi.org/10.3846/13921541.2011.645340
Published in Issue
Jan 11, 2012
Abstract Views
476
PDF Downloads
278
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.