Department of Geodesy and Cartography, Educational and Scientific Institute Agroecology and Land Management, National University of Water and Environmental Engineering, Soborna str. 11, 33028 Rivne, Ukraine
Department of land Management, Cadastre, Land monitoring and Geoinformatics, Educational and Scientific Institute Agroecology and Land Management, National University of Water and Environmental Engineering, Soborna str. 11, 33028 Rivne, Ukraine
Department of Geodesy and Cartography, Educational and Scientific Institute Agroecology and Land Management, National University of Water and Environmental Engineering, Soborna str. 11, 33028 Rivne, Ukraine
Department of Geodesy and Cartography, Educational and Scientific Institute Agroecology and Land Management, National University of Water and Environmental Engineering, Soborna str. 11, 33028 Rivne, Ukraine
In this paper, the exploration of accuracy of empirical GPS observations within the limited horizon has been conducted. The exploration has been done by assessing the outcome accuracy conducted at six points with a different percentage of limited horizon. The accuracy evaluation has been done in two variants. In the first one, the measured values of one-hour sessions have been compared with the values for the whole period of observations (6–12 hours) taken as standard. In the second variant, in order to get the independent data check, the measurement of distances and heights differences between the indicated points using the electronic total station has been conducted. In the second variant, the accuracy evaluation has been done basing on outcome deviations of one-hour session observations from the values measured by electronic total station. As the inadequate results of accuracy have been received (on the level of dozens of centimeters), it has been decided to check the measurements accuracy on observation sessions with a minimal value of DOP. In order to do this the preliminary planning has been completed and the optimal onehour sessions of observations at each point have been selected. After that, the absolute errors of observation outcomes have been calculated at these points in both mentioned above variants. The research results prove that upon doing the preliminary planning the accuracy on the level of 0.5–3 cm can be achieved.
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in Geodesy and Cartography as Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECH to make alternative agreements.