Share:


On the influence factors of audio-visual comfort of mountain landscape based on field surve

    Fangfang Liu Affiliation
    ; Jian Kang Affiliation
    ; Qi Meng Affiliation

Abstract

This study is aimed to investigate factors that can affect the audio-visual comfort of tourists with a mountainous landscape. The results reveal that the audio-visual comfort of tourists is positively correlated with the percentage of tourists engaged in a dynamic state. In contrast, the audio-visual comfort has strong negative correlations with density, sound pressure level and sound characters including fluctuation and loudness. Overall, respondents in the mountain area find the audio-visual level most comfortable when the ratio of visitors in dynamic states is greater than 33%, the fluctuation of sound is within 0.08 vacil, the loudness of sound is less than 46 sone, the population density is less than 0.822 person/m2, and the sound pressure level is less than 82 dB. Compared with urban areas, a 24 dB increase in the sound pressure level threshold is observed for a positive evaluation of audio-visual comfort in the mountain area.

Keyword : visual comfort, acoustic comfort, audio-visual comfort, mountain landscape, noise pollution, soundscape

How to Cite
Liu, F., Kang, J., & Meng, Q. (2020). On the influence factors of audio-visual comfort of mountain landscape based on field surve. Journal of Environmental Engineering and Landscape Management, 28(2), 48-61. https://doi.org/10.3846/jeelm.2020.12080
Published in Issue
Mar 23, 2020
Abstract Views
1430
PDF Downloads
778
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abbott, L. C., Taff, D., Newman, P., Benfield, J. A., & Mowen, A. J. (2016). The influence of natural sounds on attention restoration. Journal of Park and Recreation Administration, 34(3). https://doi.org/10.18666/JPRA-2016-V34-I3-6893

Arriaza, M., Cañas-Ortega, J. F., Cañas-Madueño, J. A., & Ruiz-Aviles, P. (2004). Assessing the visual quality of rural landscapes. Landscape and Urban Planning, 69(1), 115–125. https://doi.org/10.1016/j.landurbplan.2003.10.029

Barroso, F. L., Pinto-Correia, T., Ramos, I. L., Surová, D., & Menezes, H. (2012). Dealing with landscape fuzziness in user preference studies: Photo-based questionnaires in the Mediterranean context. Landscape and Urban Planning, 104(3), 329–342. https://doi.org/10.1016/j.landurbplan.2011.11.005

Bertucci, F., Parmentier, E., Lecellier, G., Hawkins, A. D., & Lecchini, D. (2016). Acoustic indices provide information on the status of coral reefs: An example from Moorea Island in the South Pacific. Scientific Reports, 6, 33326. https://doi.org/10.1038/srep33326

Brambilla, G., Gallo, V., Asdrubali, F., & D’Alessandro, F. (2013). The perceived quality of soundscape in three urban parks in Rome. The Journal of the Acoustical Society of America, 134(1), 832–839. https://doi.org/10.1121/1.4807811

Bratman, G. N., Hamilton, J. P., & Daily, G. C. (2012). The impacts of nature experience on human cognitive function and mental health. Annals of the New York Academy of Sciences, 1249(1), 118–136. https://doi.org/10.1111/j.1749-6632.2011.06400.x

Brown, A. L., Kang, J., & Gjestland, T. (2011). Towards standardization in soundscape preference assessment. Applied Acoustics, 72(6), 387–392. https://doi.org/10.1016/j.apacoust.2011.01.001

Bulut, Z., & Yilmaz, H. (2008). Determination of landscape beauties through visual quality assessment method: A case study for Kemaliye (Erzincan/Turkey). Environmental Monitoring and Assessment, 141(1), 121–129. https://doi.org/10.1007/s10661-007-9882-0

De Ruiter, E. P. J. (2005). Reclaiming land from urban traffic noise impact zones, “The great canyon”. Paper presented at the Sasbe.

Dupont, L., Ooms, K., Antrop, M., & Van Eetvelde, V. (2016). Comparing saliency maps and eye-tracking focus maps: The potential use in visual impact assessment based on landscape photographs. Landscape and Urban Planning, 148, 17–26. https://doi.org/10.1016/j.landurbplan.2015.12.007

Dupont, L., Ooms, K., Antrop, M., & Van Etvelde, V. (2017). Testing the validity of a saliency-based method for visual assessment of constructions in the landscape. Landscape and Urban Planning, 167, 325–338. https://doi.org/10.1016/j.landurbplan.2017.07.005

Echevarria Sanchez, G. M., Van Renterghem, T., Sun, K., De Coensel, B., & Botteldooren, D. (2017). Using Virtual Reality for assessing the role of noise in the audio-visual design of an urban public space. Landscape and Urban Planning, 167, 98–107. https://doi.org/10.1016/j.landurbplan.2017.05.018

Fairbrass, A. J., Rennert, P., Williams, C., Titheridge, H., & Jones, K. E. (2017). Biases of acoustic indices measuring biodiversity in urban areas. Ecological Indicators, 83, 169–177. https://doi.org/10.1016/j.ecolind.2017.07.064

Fastl, H., & Zwicker, E. (2007). Psychoacoustics: Facts and models; with 53 psychoacoustics demonstrations on CD-ROM [compact disc, audio CD-ROM]. Springer. https://doi.org/10.1007/978-3-540-68888-4

Francis, C. D., Newman, P., Taff, B. D., White, C., Monz, C. A., Levenhagen, M., Petrelli, A. R., Abbott, L. C., Newton, J., Burson, S., Cooper, C. B., Fristrup, K. M., McClure, C. J. W., Mennitt, D., Giamellaro, M., & Barber, J. R. (2017). Acoustic environments matter: Synergistic benefits to humans and ecological communities. Journal of Environmental Management, 203(Part 1), 245–254. https://doi.org/10.1016/j.jenvman.2017.07.041

Fuller, S., Axel, A. C., Tucker, D., & Gage, S. H. (2015). Connecting soundscape to landscape: Which acoustic index best describes landscape configuration? Ecological Indicators, 58, 207–215. https://doi.org/10.1016/j.ecolind.2015.05.057

George, D., & Mallery, P. (2013). IBM SPSS statistics 21 step by step: A simple guide and reference. Pearson.

Haas, G. E., & Wakefield, T. J. (1998). National parks and the American public: A national public opinion survey on the National Park System. National Parks and Conservation Association and Colorado State University. Washington DC and Fort Collins, CO.

Hao, Y., Kang, J., & Krijnders, J. D. (2015). Integrated effects of urban morphology on birdsong loudness and visibility of green areas. Landscape and Urban Planning, 137, 149–162. https://doi.org/10.1016/j.landurbplan.2015.01.006

Hermida Cadena, L. F., Lobo Soares, A. C., Pavón, I., & Bento Coelho, L. (2017). Assessing soundscape: Comparison between in situ and laboratory methodologies. Noise Mapping, 4(1), 57–66. https://doi.org/10.1515/noise-2017-0004

Hong, J. Y., & Jeon, J. Y. (2013). Designing sound and visual components for enhancement of urban soundscapes. The Journal of the Acoustical Society of America, 134(3), 2026– 2036. https://doi.org/10.1121/1.4817924

Hong, J. Y., & Jeon, J. Y. (2014). The effects of audio–visual factors on perceptions of environmental noise barrier performance. Landscape and Urban Planning, 125, 28–37. https://doi.org/10.1016/j.landurbplan.2014.02.001

Joynt, J. L. R., & Kang, J. (2010). The influence of preconceptions on perceived sound reduction by environmental noise barriers. Science of The Total Environment, 408(20), 4368–4375. https://doi.org/10.1016/j.scitotenv.2010.04.020

Kang, J. (2000). Sound propagation in street canyons: Comparison between diffusely and geometrically reflecting boundaries. The Journal of the Acoustical Society of America, 107(3), 1394–1404. https://doi.org/10.1121/1.428580

Kang, J. (2007). Urban sound environment. Routledge. https://doi.org/10.1201/9781482265613

Liu, F., & Kang, J. (2018). Relationship between street scale and subjective assessment of audio-visual environment comfort based on 3D virtual reality and dual-channel acoustic tests. Building and Environment, 129, 35–45. https://doi.org/10.1016/j.buildenv.2017.11.040

López-Martínez, F. (2017). Visual landscape preferences in Mediterranean areas and their socio-demographic influences. Ecological Engineering, 104(Part A), 205–215. https://doi.org/10.1016/j.ecoleng.2017.04.036

Marin, L. D., Newman, P., Manning, R., Vaske, J. J., & Stack, D. (2011). Motivation and acceptability norms of human-caused sound in Muir Woods National Monument. Leisure Sciences, 33(2), 147–161. https://doi.org/10.1080/01490400.2011.550224

Meng, Q., Sun, Y., & Kang, J. (2017). Effect of temporary openair markets on the sound environment and acoustic perception based on the crowd density characteristics. Science of the Total Environment, 601–602, 1488–1495. https://doi.org/10.1016/j.scitotenv.2017.06.017

Motoyama, Y., & Hanyu, K. (2014). Does public art enrich landscapes? The effect of public art on visual properties and affective appraisals of landscapes. Journal of Environmental Psychology, 40, 14–25. https://doi.org/10.1016/j.jenvp.2014.04.008

Newman, G., Wiggins, A., Crall, A., Graham, E., Newman, S., & Crowston, K. (2012). The future of citizen science: Emerging technologies and shifting paradigms. Frontiers in Ecology and the Environment, 10(6), 298–304. https://doi.org/10.1890/110294

Pilcher, E. J., Newman, P., & Manning, R. E. (2008). Understanding and managing experiential aspects of soundscapes at Muir Woods National Monument. Environmental Management, 43(3), 425. https://doi.org/10.1007/s00267-008-9224-1

Polat, A. T., & Akay, A. (2015). Relationships between the visual preferences of urban recreation area users and various landscape design elements. Urban Forestry & Urban Greening, 14(3), 573–582. https://doi.org/10.1016/j.ufug.2015.05.009

Preis, A., Kociński, J., Hafke-Dys, H., & Wrzosek, M. (2015). Audio-visual interactions in environment assessment. Science of the Total Environment, 523, 191–200. https://doi.org/10.1016/j.scitotenv.2015.03.128

Ratcliffe, E., Gatersleben, B., & Sowden, P. T. (2013). Bird sounds and their contributions to perceived attention restoration and stress recovery. Journal of Environmental Psychology, 36, 221– 228. https://doi.org/10.1016/j.jenvp.2013.08.004

Ren, X., & Kang, J. (2015). Effects of the visual landscape factors of an ecological waterscape on acoustic comfort. Applied Acoustics, 96, 171–179. https://doi.org/10.1016/j.apacoust.2015.03.007

Renterghem, T. V., Botteldooren, D., & Lercher, P. (2007). Comparison of measurements and predictions of sound propagation in a valley-slope configuration in an inhomogeneous atmosphere. The Journal of the Acoustical Society of America, 121(5), 2522–2533. https://doi.org/10.1121/1.2717765

Rheindt, F. E. (2003). The impact of roads on birds: Does song frequency play a role in determining susceptibility to noise pollution? Journal für Ornithologie, 144(3), 295–306. https://doi.org/10.1046/j.1439-0361.2003.03004.x

Rossi, F., Anderini, E., Castellani, B., Nicolini, A., & Morini, E. (2015). Integrated improvement of occupants’ comfort in urban areas during outdoor events. Building and Environment, 93(Part 2), 285–292. https://doi.org/10.1016/j.buildenv.2015.07.018

Santangelo, V., Fagioli, S., & Macaluso, E. (2010). The costs of monitoring simultaneously two sensory modalities decrease when dividing attention in space. NeuroImage, 49(3), 2717–2727. https://doi.org/10.1016/j.neuroimage.2009.10.061

Schormans, A. L., Typlt, M., & Allman, B. L. (2017). Crossmodal plasticity in auditory, visual and multisensory cortical areas following noise-induced hearing loss in adulthood. Hearing Research, 343, 92–107. https://doi.org/10.1016/j.heares.2016.06.017

Sever, I., & Verbič, M. (2018). Providing information to respondents in complex choice studies: A survey on recreational trail preferences in an urban nature park. Landscape and Urban Planning, 169(Suppl C), 160–177. https://doi.org/10.1016/j.landurbplan.2017.09.003

Talsma, D., Senkowski, D., Soto-Faraco, S., & Woldorff, M. G. (2010). The multifaceted interplay between attention and multisensory integration. Trends in Cognitive Sciences, 14(9), 400–410. https://doi.org/10.1016/j.tics.2010.06.008

UNESCO. (2019). Mount Huangshan – UNESCO World Heritage Center. http://whc.unesco.org/pg.cfm?cid=31&id_site=547

Watkins, S., Shams, L., Josephs, O., & Rees, G. (2007). Activity in human V1 follows multisensory perception. NeuroImage, 37(2), 572–578. https://doi.org/10.1016/j.neuroimage.2007.05.027

Watson, J. E. M., Dudley, N., Segan, D. B., & Hockings, M. (2014). The performance and potential of protected areas. Nature, 515, 67–73. https://doi.org/10.1038/nature13947

Xie, H., Li, H., Liu, C., Li, M., & Zou, J. (2016). Noise exposure of residential areas along LRT lines in a mountainous city. Science of the Total Environment, 568, 1283–1294. https://doi.org/10.1016/j.scitotenv.2016.03.097

Yan, B., Chen, S. B., & Deng, S. Y. (2013). An exploration into green land system and unexpected disaster prevention in mountain city: A case study of the Shapingba Downtown in Chongqing. Applied Mechanics and Materials, 253–255, 151–156. https://doi.org/10.4028/www.scientific.net/AMM.253-255.151

Yang, M., & Kang, J. (2016). Pitch features of environmental sounds. Journal of Sound and Vibration, 374, 312–328. https://doi.org/10.1016/j.jsv.2016.03.040

Yang, W., & Kang, J. (2005). Soundscape and sound preferences in urban squares: A case study in Sheffield. Journal of Urban Design, 10(1), 61–80. https://doi.org/10.1080/13574800500062395

Yu, L., & Kang, J. (2009). Modeling subjective evaluation of soundscape quality in urban open spaces: An artificial neural network approach. The Journal of the Acoustical Society of America, 126(3), 1163–1174. https://doi.org/10.1121/1.3183377

Yu, T., Behm, H., Bill, R., & Kang, J. (2017). Audio-visual perception of new wind parks. Landscape and Urban Planning, 165, 1–10. https://doi.org/10.1016/j.landurbplan.2017.04.012

Zhang, M., & Kang, J. (2007). Towards the evaluation, description, and creation of soundscapes in urban open spaces. Environment and Planning B: Planning and Design, 34(1), 68–86. https://doi.org/10.1068/b31162