Share:


In situ and ex situ bioremediation of heavy metals: the present scenario

    Oindrila Paul Affiliation
    ; Amrita Jasu Affiliation
    ; Dibyajit Lahiri Affiliation
    ; Moupriya Nag Affiliation
    ; Rina Rani Ray Affiliation

Abstract

Enhanced population growth, rapid industrialization, urbanization and hazardous industrial practices have resulted in the development of environmental pollution in the past few decades. Heavy metals are one of those pollutants that are related to environmental and public health concerns based on their toxicity. Effective bioremediation may be accomplished through “ex situ” and “in situ” processes, based on the type and concentration of pollutants, characteristics of the site but is not limited to cost. The recent developments in artificial neural network and microbial gene editing help to improve “in situ” bioremediation of heavy metals from the polluted sites. Multi-omics approaches are adopted for the effective removal of heavy metals by various indigenous microbes. This overview introspects two major bioremediation techniques, their principles, limitations and advantages, and the new aspects of nanobiotechnology, computational biology and DNA technology to improve the scenario.

Keyword : bioremediation, “in situ” and “ex situ” bioremediation, bioattenuation, heavy metals

How to Cite
Paul, O., Jasu, A., Lahiri, D., Nag, M., & Ray, R. R. (2021). In situ and ex situ bioremediation of heavy metals: the present scenario. Journal of Environmental Engineering and Landscape Management, 29(4), 454–469. https://doi.org/10.3846/jeelm.2021.15447
Published in Issue
Dec 16, 2021
Abstract Views
1620
PDF Downloads
1433
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Achal, V., Pan, X., & Zhang, D. (2011). Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecological Engineering, 37(10), 1601–1605. https://doi.org/10.1016/j.ecoleng.2011.06.008

Achiba, W. B., Gabteni, N., Lakhdar, A., Laing, G. D., Verloo, M., Jedidi, N., & Gallali, T. (2009). Effects of 5-year application of municipal solid waste compost on the distribution and mobility of heavy metals in a Tunisian calcareous soil. Agriculture, Ecosystems & Environment, 130(3–4), 156–163. https://doi.org/10.1016/j.agee.2009.01.001

Adams, J. A., & Reddy, K. R. (2003). Extent of benzene biodegradation in saturated soil column during air sparging. Ground Water Monitoring Remediation, 23(3), 85–94. https://doi.org/10.1111/j.1745-6592.2003.tb00686.x

Aftab, B., Khan, S. J., Maqbool, T., & Hankins, N. P. (2017). Heavy metals removal by osmotic membrane bioreactor (OMBR) and their effect on sludge properties. Desalination, 403, 117–127. https://doi.org/10.1016/j.desal.2016.07.003

Al-Sulaimani, H. S., Al-Wahaibi, Y. M., Al-Bahry, S., Elshafie, A., Al-Bemani, A. S., Joshi, S. J., & Zargari, S. (2010). Experimental investigation of biosurfactants produced by Bacillus species and their potential for MEOR in Omani oil field. In Proceedings of the SPE EOR Conference at Oil and Gas West Asia 2010 (OGWA 10) (pp. 378–386), Muscat, Oman. Society of Petroleum Engineers. https://doi.org/10.2118/129228-MS

Anjum, M., Miandad, R., Waqas, M., Gehany, F., & Barakat, M. A. (2016). Remediation of wastewater using various nanomaterials. Arabian Journal of Chemistry, 12(8), 4897–4919. https://doi.org/10.1016/j.arabjc.2016.10.004

Arora, P. K., & Bae, H. (2014). Integration of bioinformatics to biodegradation. Biological Procedures Online, 16, 8. https://doi.org/10.1186/1480-9222-16-8

Atagana, H. I. (2008). Compost bioremediation of hydrocarbon-contaminated soil inoculated with organic manure. African Journal of Biotechnology, 7(10), 1516–1525.

Aydinalp, C., & Marinova, S. (2009). The effects of heavy metals on seed germination and plant growth on alfalfa plant (Medicago sativa). Bulgarian Journal of Agricultural Sciences, 15(4), 347–350.

Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques-classification based on site of application: principles, advantages, limitations and prospects. World Journal of Microbiology & Biotechnology, 32(11), 180. https://doi.org/10.1007/s11274-016-2137-x

Baker, R. S., & Moore, A. T. (2000). Optimizing the effectiveness of in situ bioventing. Pollution Engineering, 32(7), 44–47.

Bandowe, B. A. M., Bigalke, M., Boamah, L., Nyarko, E., Sa­a­lia, F. K., & Wilcke, W. (2014). Polycyclic aromatic compounds (PAHs and oxygenated PAHs) and trace metals in fish species from Ghana (West Africa): Bioaccumulation and health risk assessment. Environmental International, 65, 135–146. https://doi.org/10.1016/j.envint.2013.12.018

Bandowe, B. A. M., & Meusel, H. (2017). Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment – a review. Science of Total Environmental, 581–582, 237–257. https://doi.org/10.1016/j.scitotenv.2016.12.115

Barros, A. J. M., Prasad, S., Leite, V. D., & Souza, A. G. (2006). The process of biosorption of heavy metals in bioreactors loaded with sanitary sewage sludge. Brazilian Journal of Chemical Engineering, 23(2), 153–162. https://doi.org/10.1590/S0104-66322006000200001

Basu, S., Rabara, R. C., Negi, S., & Shukla, P. (2018). Engineering PGPMOs through gene editing and systems biology: A solution for phytoremediation? Trends in Biotechnology, 36, 499–510. https://doi.org/10.1016/j.tibtech.2018.01.011

Behler, J., Sharma, K., Reimann, V., Wilde, A., Urlaub, H., & Hess, W. R. (2018). The host-encoded RNase E endonuclease as the crRNA maturation enzyme in a CRISPR–Cas subtype III-Bv system. Nature Microbiology, 3(3), 367–377. https://doi.org/10.1038/s41564-017-0103-5

Bento, F. M., Camargo, F. A., Okeke, B. C., & Frankenber­ger, W. T. (2005). Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresourource Technology, 96(9), 1049–1055. https://doi.org/10.1016/j.biortech.2004.09.008

Boopathy, R. (2000). Factors limiting bioremediation technologies. Bioresource Technology, 74(1), 63–67. https://doi.org/10.1016/S0960-8524(99)00144-3

Bundy, J. G., Paton, G. I., & Campbell, C. D. (2002). Microbial communities in different soil types do not converge after diesel contamination. Journal of Applied Microbiology, 92(2), 276–288. https://doi.org/10.1046/j.1365-2672.2002.01528.x

Butt, H., Jamil, M., Wang, J. Y., Al-Babili, S., & Mahfouz, M. M. (2018). Engineering plant architecture via CRISPR/Cas9-mediated alteration of strigolactone biosynthesis. BMC Plant Biology, 18(1), 174. https://doi.org/10.1186/s12870-018-1387-1

Carberry, B. J., & Wik, J. (2001). Comparison of ex situ and ‘in situ’ bioremediation of unsaturated soils contaminated by petroleum. Journal of Environmental Science and Health, Part A, 36(8), 1491–1503. https://doi.org/10.1081/ESE-100105726

Cervantes, C., Campos-García, J., Devars, S., Gutiérrez-Corona, F., Loza-Tavera, H., Torres-Guzmán, J. C., & Moreno-Sánchez, R. (2001). Interactions of chromium with microorganisms and plants. FEMS Microbiology Reviews, 25(3), 335–347. https://doi.org/10.1111/j.1574-6976.2001.tb00581.x

Chemlal, R., Abdi, N., Lounici, H., Drouiche, N., Pauss, A., & Mameri, N. (2013). Modeling and qualitative study of diesel biodegradation using biopile process in sandy soil. International Biodeterioration and Biodegradation, 78, 43–48. https://doi.org/10.1016/j.ibiod.2012.12.014

Choudhary, S., & Sar, P. (2011). Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste. Journal of Hazardous Materials, 186(1), 336–343. https://doi.org/10.1016/j.jhazmat.2010.11.004

Dary, M., Chamber-Pérez, M. A., Palomares, A. J., & Pajuelo, E. (2010). “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. Journal of Hazardous Materials, 177(1–3), 323–330. https://doi.org/10.1016/j.jhazmat.2009.12.035

Dash, H. R., & Das, S. (2012). Bioremediation of mercury and the importance of bacterial mer genes. International Biodeterioration & Biodegradation, 75, 207–213. https://doi.org/10.1016/j.ibiod.2012.07.023

Davis, C. M., & Vincent, J. B. (1997). Chromium oligopeptide activates insulin receptor tyrosine kinase activity. Biochemistry, 36(15), 4382–4385. https://doi.org/10.1021/bi963154t

Davis, J. W., Klier, N. J., & Carpenter, C. L. (1994). Natural biological attenuation of benzene in ground water beneath a manufacturing facility. Groundwater, 32(2), 215–226. https://doi.org/10.1111/j.1745-6584.1994.tb00636.x

De Pourcq, K., Ayora, C., García-Gutiérrez, M., Missana, T., & Carrera, J. (2015). A clay permeable reactive barrier to remove Cs-137 from groundwater: Column experiments. Journal of Environmental Radioactivity, 149, 36–42. https://doi.org/10.1016/j.jenvrad.2015.06.029

De Sousa, C. S., Hassan, S. S., Pinto, A. C., Silva, W. M., De Almeida, S. S., & Soares, S. D. C. (2018). Microbial omics: Applications in biotechnology. In D. Barh & V. Azevedo (Eds.), Omics technologies and bio-engineering (pp. 3–20). Academic Press. https://doi.org/10.1016/B978-0-12-815870-8.00001-2

de-Bashan, L. E., Hernandex, J.-P., & Bashan, Y. (2012). The potential contribution of plant growth-promoting bacteria to reduce environmental degradation – A comprehensive evaluation. Applied Soil Ecology, 61, 171–189. https://doi.org/10.1016/j.apsoil.2011.09.003

Delille, D., Duval, A., & Pelletier, E. (2008). Highly efficient pilot biopiles for on-site fertilization treatment of diesel oil-contaminated sub-Antarctic soil. Cold Regions Science and Technology, 54, 7–18. https://doi.org/10.1016/j.coldregions.2007.09.003

Deng, L., Su, Y., Su, H., Wang, X., & Zhu, X. (2007). Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. Journals of Hazardous Materials, 143(1–2), 220–225. https://doi.org/10.1016/j.jhazmat.2006.09.009

Dimkpa, C. O., Merten, D., Svatoš, A., Büchel, G., & Kothe, E. (2009). Siderophores mediate reduced and increased uptake of cadmium byStreptomyces tendaeF4 and sunflower (Helianthus annuus), respectively. Journal of Applied Microbiology, 107(5), 1687–1696. https://doi.org/10.1111/j.1365-2672.2009.04355.x

Di Toro, S., Zanaroli, G., & Fava, F. (2006). Intensification of the aerobic bioremediation of an actual site soil historically contaminated by polychlorinated biphenyls (PCBs) through bioaugmentation with a non acclimated, complex source of microorganisms. Microbial Cell Factories, 5, 11.

Dong, G., Wang, Y., Gong, L., Wang, M., Wang, H., He, N., & Li, Q. (2013). Formation of soluble Cr(III) end-products and nanoparticles during Cr(VI) reduction by Bacillus cereus strain XMCr-6. Biochemical Engineering Journal, 70, 166–172. https://doi.org/10.1016/j.bej.2012.11.002

Fauziah, S. H., Jayanthi, B., Emenike, C. U., & Agamuthu. (2017). Remediation of heavy metal contaminated soil using potential microbes isolated from a closed disposal site. International Journal of Bioscience, Biochemistry and Bioinformatics, 7(4), 230–237. https://doi.org/10.17706/ijbbb.2017.7.4.230-237

Folch, A., Vilaplana, M., Amado, L., Vicent, T., & Caminal, G. (2013). Fungal permeable reactive barrier to remediate groundwater in an artificial aquifer. Journal of Hazardous Materials, 262, 554–560. https://doi.org/10.1016/j.jhazmat.2013.09.004

Fory, P. A., Triplett, L., Ballen, C., Abello, J. F., Duitama, J., & Aricapa, M. G. (2014). Comparative analysis of two emerging rice seed bacterial pathogens. Phytopathology, 104(5), 436–444. https://doi.org/10.1094/PHYTO-07-13-0186-R

Francis, A. J. (1990). Microbial dissolution and stabilization of toxic metals and radionuclides in mixed wastes. Experientia, 46, 840–851. https://doi.org/10.1007/BF01935535

Frascari, D., Zanaroli, G., & Danko, A. S. (2015). ‘In situ’ aerobic cometabolism of chlorinated solvents: A review. Journal of Hazardous Materials, 283, 382–399. https://doi.org/10.1016/j.jhazmat.2014.09.041

Fruchter, R., & Demian, P. (2002). CoMem: Designing an interaction experience for reuse of rich contextual knowledge from a corporate memory. AI EDAM, 16(3), 127–147. https://doi.org/10.1017/S0890060402163025

Frutos, F. J. G., Pérez, R., Escolano, O., Rubio, A., Gimeno, A., Fernandez, M. D., Carbonell, G., Perucha, C., & Laguna, J. (2012). Remediation trials for hydrocarbon-contaminated sludge from a soil washing process: Evaluation of bioremediation technologies. Journal of Hazardous Materials, 199, 262–271. https://doi.org/10.1016/j.jhazmat.2011.11.017

Fulekar, M. H., Sharma, J., & Tendulkar, A. (2012). Bioremediation of heavy metals using biostimulation in laboratory bioreactor. Environmental Monitoring and Assessments, 184(12), 7299–7307. https://doi.org/10.1007/s10661-011-2499-3

Garbisu, C., Alkorta, I., Llama, M. J., & Serra, J. L. (1998). Aerobic chromate reduction by bacillus subtilis. Biodegradation, 9, 133–141. https://doi.org/10.1023/A:1008358816529

García, Y., Ruiz, C., Mena Ramírez, E., Villaseñor Camacho, J., Cañizares, P., & Rodrigo, M. A. (2014). Removal of nitrates from spiked clay soils by coupling electrokinetic and permeable reactive barrier technologies. Journal of Chemical Technology and Biotechnology, 90, 1719–1726.

Gibert, O., Cortina, J. L., de Pablo, J., & Ayora, C. (2013). Performance of a field-scale permeable reactive barrier based on organic substrate and zero-valent iron for in situ remediation of acid mine drainage. Environmental Science and Pollution Research, 20(11), 7854–7862. https://doi.org/10.1007/s11356-013-1507-2

Gidarakos, E., & Aivalioti, M. (2007). Large scale and long term application of bioslurping: The case of a Greek petroleum refinery site. Journal of Hazardous Materials, 149, 574–581. https://doi.org/10.1016/j.jhazmat.2007.06.110

Godwill, E. A., Ferdinand, P. U., Nwalo, F. N., & Unachukwu, M. N. (2019). Mechanism and health effects of heavy metal toxicity in humans. In Poisoning in the modern world – new tricks for an old dog? IntechOpen.
https://doi.org/10.5772/intechopen.82511

González-Chávez, M. C., Carrillo-González, R., Wright, S. F., & Nichols, K. A. (2004). The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution, 130(3), 317–323. https://doi.org/10.1016/j.envpol.2004.01.004

Guo, H., Luo, S., Chen, L., Xiao, X., Xi, Q., Wei, W., Zeng, G., Liu, C., Wan, Y., Chen, J., & He, Y. (2010). Bioremediation of heavy metals by growing hyperaccumulator endophytic bacterium Bacillus sp. L14. Bioresource Technology, 101(22), 8599–8605. https://doi.org/10.1016/j.biortech.2010.06.085

Hattab, N., Hambli, R., Motelica-Heino, M., & Bourrat, X. (2013). Application of neural network model for the prediction of Chromium concentration in phytoremediated contaminated soils. Journal of Geochemical Exploration, 128, 25–34. https://doi.org/10.1016/j.gexplo.2013.01.005

Henderson, A. D., & Demond, A. H. (2013). Pemeability of iron sulfide (FeS)-based materials for groundwater remediation. Water Research, 47, 1267–1276. https://doi.org/10.1016/j.watres.2012.11.044

Hildebrandt, U., Regvar, M., & Bothe, H. (2007). Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry, 68, 139–146. https://doi.org/10.1016/j.phytochem.2006.09.023

Hobson, A. M., Frederickson, J., & Dise, N. B. (2005). CH4 and N2O from mechanically turned windrow and vermicomposting systems following in-vessel pre-treatment. Waste Management, 25, 345–352. https://doi.org/10.1016/j.wasman.2005.02.015

Hopkins, W. A., Congdon, J., & Ray, J. K. (2000). Incidence and impact of axial malformations in larval bullfrogs (Rana catesbeiana) developing in sites polluted by a coal-burning power plant. Environmental Toxicology and Chemistry, 19(4), 862–868. https://doi.org/10.1002/etc.5620190412

Hrynkiewicz, K., Dabrowska, G., Baum, C., Niedojadlo, K., & Leinweber, P. (2012). Interactive and single effects of ectomycorrhiza formation and Bacillus cereus on metallothionein MT1 expression and phytoextraction of Cd and Zn by Willows. Water, Air, and Soil Pollution, 223, 957–968. https://doi.org/10.1007/s11270-011-0915-5

Huang, T., Li, D., & Kexiang, L. (2015). Heavy metal removal from MSWI fly ash by electrokinetic remediation coupled with a permeable activated charcoal reactive barrier. Scientific Reports, 5, 15412. https://doi.org/10.1038/srep15412

Ibrahim, A. E. D. M., Hamdona, S., & El-Naggar, M. (2019). Heavy metal removal using a fixed bed bioreactor packed with a solid supporter. Beni-Suef University Journal of Basic and Applied Sciences, 8, 1. https://doi.org/10.1186/s43088-019-0002-3

Ijaz, A., Shabir, G., Khan, Q. M., & Afzal, M. (2015). Enhanced remediation of sewage effluent by endophyte-assisted floating treatment wetlands. Ecological Engineering, 84, 58–66. https://doi.org/10.1016/j.ecoleng.2015.07.025

Ismail, T. N. H. T., Adon, R. A. M., Diman, S. F., & Wijeye­se­kera, D. C. (2013). Innovative green technology and products meeting geo-environmental challenges. Procedia Engineering, 53, 104–115. https://doi.org/10.1016/j.proeng.2013.02.016

Jaiswal, S., Singh, D. K., & Shukla, P. (2019). Gene editing and systems biology tools for pesticide bioremediation: A review. Frontiers in Microbiology, 10, 87. https://doi.org/10.3389/fmicb.2019.00087

Jeyasingh, J., & Philip, L. (2005). Bioremediation of Chromium contaminated soil: Optimization of operating parameters under laboratory conditions. Journal of Hazardous Materials, 118(1–3), 113–120. https://doi.org/10.1016/j.jhazmat.2004.10.003

Jiang, C.-Y., Sheng, X.-F., Qian, M., & Wang, Q.-Y. (2008). Isolation and characterization of heavy metal resistant Burkholderia species from heavy metal contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal polluted soil. Chemosphere, 72, 157–164. https://doi.org/10.1016/j.chemosphere.2008.02.006

Jørgensen, K. S. (2007). In situ bioremediation. Advances in Applied Microbiology, 61, 285–305. https://doi.org/10.1016/S0065-2164(06)61008-3

Joshi, P. M., & Juwarkar, A. A. (2009). In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. Environmental Science and Technology, 43(15), 5884–5889. https://doi.org/10.1021/es900063b

Kanmani, P., Aravind, J., & Preston, D. (2012). Remediation of chromium contaminants using bacteria. International Journal of Environmental Science and Technology, 9, 183–193. https://doi.org/10.1007/s13762-011-0013-7

Kapahi, M., & Sachdeva, S. (2019). Bioremediation options for heavy metal pollution. Journal of Health and Pollution, 9(24), 191–203. https://doi.org/10.5696/2156-9614-9.24.191203

Kardam, A., Raj, K., & Srivastava, S. (2012). Green nanotechnology for bioremediation of toxic metals from waste water. In L. Khemani, M. Srivastava, & S. Srivastava (Eds.), Chemistry of phytopotentials: Health, energy and environmental perspectives. Springer.

Katsou, E., Malamis, S., & Loizidou, M. (2011). Performance of a membrane bioreactor used for the treatment of wastewater contaminated with heavy metals. Bioresource Technology, 102(6), 4325–4332. https://doi.org/10.1016/j.biortech.2010.10.118

Khan, F. I., Tahir, H., & Ramzi, H. (2004). An overview and analysis of site remediation technologies. Journal of Environmental Management, 71, 95–122. https://doi.org/10.1016/j.jenvman.2004.02.003

Kim, S., Choi, D., Sim, D., & Oh, Y. (2005). Evaluation of bioremediation effectiveness on crude oil-contaminated sand. Chemosphere, 59(6), 845–852. https://doi.org/10.1016/j.chemosphere.2004.10.058

Kim, S., Krajmalnik-Brown, R., Kim, J.-O., & Chung, J. (2014). Remediation of petroleum hydrocarbon-contaminated sites by DNA diagnosis-based bioslurping technology. Science of The Total Environment, 497–498, 250–259. https://doi.org/10.1016/j.scitotenv.2014.08.002

Komesli, O. T. (2014). Removal of heavy metals in wastewater by membrane bioreactor: Effects of flux and suction period. Journal of the Chemical Society of Pakistan, 36(4), 654.

Kumari, B., & Singh, S. N. (2011). Phytoremediation of metals from fly ash through bacterial augmentation. Ecotoxicology, 20, 166–176. https://doi.org/10.1007/s10646-010-0568-y

Latha, P. A., & Reddy, S. S. (2013). Review on bioremediation potential tool for removing environmental pollution. International Journal of Basic and Applied Chemical Sciences.

Lauwerys, R., Haufroid, V., Hoet, P., & Lison, D. (2007). Toxicologie industrielle et intoxications professionnelles. Elsevier.

Lebeau, T., & Jézéquel, K. (2008). Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: A review. Environmental Pollution, 153(3), 497–522. https://doi.org/10.1016/j.envpol.2007.09.015

Lee, J. H. (2013). An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnology and Bioprocess Engineering, 18, 431–439. https://doi.org/10.1007/s12257-013-0193-8

LeFauve, M. K., & Connaughtont, V. P. (2017). Developmental exposure to heavy metals alters visually-guided behaviors in zebrafish. Current Zoology, 63(2), 221–227. https://doi.org/10.1093/cz/zox017

Liu, Z., Liu, Y., Zeng, G., Shao, B., Chen, M., & Li, Z. (2018). Application of molecular docking for the degradation of organic pollutants in the environmental remediation: A review. Chemosphere, 203, 139–150. https://doi.org/10.1016/j.chemosphere.2018.03.179

Loukidou, M. X., Matis, K. A., Zouboulis, A. I., & Liakopoulou-Kyriakidou, M. (2003). Removal of As(V) from wastewaters by chemically modified fungal biomass. Water Research, 37(18), 4544–4552. https://doi.org/10.1016/S0043-1354(03)00415-9

Magalhães, S. M. C., Ferreira, J. R. M., & Castro, P. M. L. (2009). Investigations into the application of a combination of bioventing and biotrickling filter technologies for soil decontamination processes – A transition regime between bioventing and soil vapour extraction. Journal of Hazardous Materials, 170, 711–715. https://doi.org/10.1016/j.jhazmat.2009.05.008

Maila, M. P., & Cloete, T. E. (2004). Bioremediation of petroleum hydrocarbons through landfarming: Are simplicity and cost-effectiveness the only advantages? Reviews in Environmental Science and Bio/Technology, 3, 349–360.

Malla, M. A., Dubey, A., Yadav, S., Kumar, A., Hashem, A., & Abd_Allah, E. F. (2018). Understanding and designing the strategies for the microbe-mediated remediation of environmental contaminants using omics approaches. Frontiers in Microbiology, 9, 1132. https://doi.org/10.3389/fmicb.2018.01132

Manahan, S. (2010). Environmental chemistry. CRC Press.

Mani, D., & Kumar, C. (2013). Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: An overview with special reference to phytoremediation. International Journal of Environmental Science and Technology, 11(3), 843–872. https://doi.org/10.1007/s13762-013-0299-8

Manisalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou, E. (2020). Environmental and health impacts of air pollution: A review. Frontiers in Public Health, 8, 14. https://doi.org/10.3389/fpubh.2020.00014

Martin, S., & Griswold, W. (2009). Human health effects of heavy metals. Environmental Science and Technology Briefs for Citizens, 15, 1–6.

Meagher, R. B. (2000). Phytoremediation of toxic elemental and organic pollutants. Current Opinion in Plant Biology, 3, 153–162. https://doi.org/10.1016/S1369-5266(99)00054-0

Mena, E., Ruiz, C., Villaseñor, J., Rodrigo, M. A., & Cañizares, P. (2015). Biological permeable reactive barriers coupled with electrokinetic soil flushing for the treatment of diesel-polluted clay soil. Journal of Hazardous Materials, 283, 131–139. https://doi.org/10.1016/j.jhazmat.2014.08.069

Mench, M., Schwitzguébel, J.-P., Schroeder, P., Bert, V., Gawronski, S., & Gupta, S. (2009). Assessment of successful experiments and limitations of phytotechnologies: Contaminant uptake, detoxification and sequestration, and consequences for food safety. Environmental Science and Pollution Research, 16, 876–900. https://doi.org/10.1007/s11356-009-0252-z

Millacura, F. A., Cárdenas, F., Mendez, V., Seeger, M., & Rojas, L. A. (2017). Degradation of benzene by the heavy-metal resistant bacterium Cupriavidus metallidurans CH34 reveals its catabolic potential for aromatic compounds. bioRxiv. https://doi.org/10.1101/164517

Miransari, M. (2013). Soil microbes and the availability of soil nutrients. Acta Physiologiae Plantarum, 35, 3075–3084. https://doi.org/10.1007/s11738-013-1338-2

Mulligan, C. N., & Yong, R. N. (2004). Natural attenuation of contaminated soils. Enviornment International, 30(4), 587–601. https://doi.org/10.1016/j.envint.2003.11.001

Nikolopoulou, M., Pasadakis, N., Norf, H., & Kalogerakis, N. (2013). Enhanced ex situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids. Marine Pollution Bulletin, 77, 37–44. https://doi.org/10.1016/j.marpolbul.2013.10.038

Nolte, T. M., Pinto-Gil, K., Hendriks, A. J., Ragas, A. M., & Pastor, M. (2018). Quantitative structure–activity relationships for primary aerobic biodegradation of organic chemicals in pristine surface waters: Starting points for predicting biodegradation under acclimatization. Environmental Science: Processes and Impacts, 20, 157–170. https://doi.org/10.1039/C7EM00375G

Norström, A., Larsdotter, K., Gumaelius, L., Jansen, J. L. C., & Dalhammar, G. (2004). A small scale hydroponics wastewater treatment system under Swedish conditions. Water Science & Technology, 48(11–12), 161–167. https://doi.org/10.2166/wst.2004.0830

Obiri-Nyarko, F., Grajales-Mesa, S. J., & Grzegorz, M. (2014) An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere, 111, 243–259. https://doi.org/10.1016/j.chemosphere.2014.03.112

Olaniran, A. O., Balgobind, A., & Pillay, B. (2013). Bioavailability of heavy metals in soil: Impact on microbial biodegradation of organic compounds and possible improvement strategies. International Journal of Molecular Sciences, 14, 10197–10228. https://doi.org/10.3390/ijms140510197

Ostrem Loss, E. M., & Yu, J.-H. (2018). Bioremediation and microbial metabolism of benzo(a)pyrene. Molecular Microbiology, 109(4), 433–444. https://doi.org/10.1111/mmi.14062

Paliwal, V., Puranik, S., & Purohit, H. J. (2012). Integrated perspective for effective bioremediation. Applied Biochemistry and Biotechnology, 166, 903–924. https://doi.org/10.1007/s12010-011-9479-5

Patrick, H., & Violaine, P. (2014). In situ vadose zone bioremediation. Current Opinion in Biotechnology, 27, 1–7. https://doi.org/10.1016/j.copbio.2013.08.018

Pazirandeh, M., Wells, B. M., & Ryan, R. L. (1998). Development of bacterium-based heavy metal biosorbents: Enhanced uptake of cadmium and mercury by escherichia coli expressing a metal binding motif. Applied and Environmental Microbiology, 64, 4068–4072. https://doi.org/10.1128/AEM.64.10.4068-4072.1998

Peitzsch, N., Eberz, G., & Nies, D. H. (1998). Alcaligenes eutrophus as a bacterial chromate sensor. Applied and Environmental Microbiology, 64, 453–458. https://doi.org/10.1128/AEM.64.2.453-458.1998

Pettine, M., Barra, L., Campanella, L., & Millero, F. J. (1998). Effect of metals on the reduction of Chromium (VI) with hydrogen sulfide. Water Research, 32(9), 2807– 2813. https://doi.org/10.1016/S0043-1354(98)00011-6

Philp, J. C., & Atlas, R. M. (2005). Bioremediation of contaminated soils and aquifers. In Bioremediation: Applied microbial solutions for real-world environmental cleanup. American Society for Microbiology.

Pinto, E., Sigaud-kutner, T. C. S., Leitão, M. A. S., Okamoto, O. K., Morse, D., & Colepicolo, P. (2003). Heavy metal–induced oxidative stress in algae. Journal of Phycology, 39(6), 1008–1018. https://doi.org/10.1111/j.0022-3646.2003.02-193.x

Poey, J., & Philibert, C. (2000). Toxicité des métaux. Revue Française de Laboratoires, 323, 35–43. https://doi.org/10.1016/S0338-9898(00)80266-8

Purohit, H. J., Tikariha, H., & Kalia, V. C. (2018). Current scenario on application of computational tools in biological systems. In H. J. Purohit, V. C. Kalia, & M. R. Prabhakar (Eds.), Soft computing for biological systems (pp. 1–12). Springer. https://doi.org/10.1007/978-981-10-7455-4_1

Rajendran, P., Muthukrishnan, J., & Gunasekaran, P. (2003). Microbes in heavy metal remediation. Indian Journal of Experimental Biology, 41(9), 935–944.

Rasmussen, L. D., Sørensen, S. J., Turner, R. R., & Barkay, T. (2000). Application of mer-lux biosensor for estimating bioavailable mercury in soil. Soil Biology and Biochemistry, 32, 639–646. https://doi.org/10.1016/S0038-0717(99)00190-X

Ray, R. R. (2015). Haemotoxic effect of lead: A review. Proceedings of the Zoological Society, 69(2), 161–172. https://doi.org/10.1007/s12595-015-0160-9

Ray, R. R. (2016). Adverse hematological effects of hexavalent chromium: An overview. Interdisciplinary Toxicology, 9(2), 55–65. https://doi.org/10.1515/intox-2016-0007

Rivera, A. L. (1983). Heavy metal removal in a packed-bed, anaerobic upflow (ANFLOW) bioreactor. Water Pollution Control Federation, 55(12), 1450–1456.

Robles-González, I. V., Fava, F., & Poggi-Varaldo, H. M. (2008). A review on slurry bioreactors for bioremediation of soils and sediments. Microbial Cell Factories, 7, 5. https://doi.org/10.1186/1475-2859-7-5

Roy, M., Giri, A. K., Dutta, S., & Mukherjee, P. (2015). Integrated phytobial remediation for sustainable management of arsenic in soil and water.Environment International, 75, 180–198. https://doi.org/10.1016/j.envint.2014.11.010

San Miguel, A., Ravanel, P., & Raveton, M. (2013). A comparative study on the uptake and translocation of organochlorines by Phragmites australis. Journal of Hazardous Materials, 244, 60–69. https://doi.org/10.1016/j.jhazmat.2012.11.025

Saravanan, V. S., Madhaiyan, M., & Thangaraju, M. (2007). Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere, 66(9), 1794–1798. https://doi.org/10.1016/j.chemosphere.2006.07.067

Say, R., Yimaz, N., & Denizli, A. (2003). Removal of heavy metal ions using the fungus Penicillium canescens. Adsorption Science and Technology, 21, 643–650. https://doi.org/10.1260/026361703772776420

Schmidt, A., Haferburg, G., Sineriz, M., Merten, D., Büchel, G., & Kothe, E. (2005). Heavy metal resistance mechanisms in actinobacteria for survival in AMD contaminated soils. Geocheminstry, 65(S1), 131–144. https://doi.org/10.1016/j.chemer.2005.06.006

Seigle-Murandi, F., Guiraud, P., Croize, J., Falsen, E., & Eriksson, K. L. (1996). Bacteria are omnipresent on phanerochaete chrysosporium burdsall. Applied and Environmental Micro­biology, 62(7), 2477–2481. https://doi.org/10.1128/aem.62.7.2477-2481.1996

Shazia, I., Uzma, Sadia, G. R., & Talat, A. (2013). Bioremediation of heavy metals using isolates of filamentous fungus aspergillus fumigatus collected from polluted soil of Kasur, Pakistan. International Research Journal of Biological Sciences, 2(12), 66–73.

Silva-Castro, G. A., Uad, I., Rodríguez-Calvo, A., González-López, J., & Calvo, C. (2015). Response of autochthonous microbiota of diesel polluted soils to land-farming treatments. Environmental Research, 137, 49–58. https://doi.org/10.1016/j.envres.2014.11.009

Smets, B. F., & Pritchard, P. H. (2003). Elucidating the microbial component of natural attenuation. Current Opinion in Biotechnology, 14, 283. https://doi.org/10.1016/S0958-1669(03)00062-4

Smith, E., Thavamani, P., Ramadass, K., Naidu, R., Srivastava, P., & Megharaj, M. (2015). Remediation trials for hydrocarbon-contaminated soils in arid environments: Evaluation of bioslurry and biopiling techniques. International Biodeterioration & Biodegradation, 101, 56–65. https://doi.org/10.1016/j.ibiod.2015.03.029

Stamets, P. (2005). Mycelium running: how mushrooms can help save the world. Ten Speed Press.

Tampouris, S., Papassiopi, N., & Paspaliaris, I. (2001). Removal of contaminant metals from fine grained soils, using agglomeration, chloride solutions and pile leaching techniques. Journal of Hazardous Material, 84(2–3), 297–319. https://doi.org/10.1016/S0304-3894(01)00233-3

Taştan, B. E., Ertuğrul, S., & Dönmez, G. (2010). Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor. Bioresource Technology, 101(3), 870–876. https://doi.org/10.1016/j.biortech.2009.08.099

Thiruvenkatachari, R., Vigneswaran, S., & Naidu, R. (2008). Permeable reactive barrier for groundwater remediation. Journal of Industrial and Engineering Chemistry, 14, 145–156.

Tiecher, T. L., Ceretta, C. A., Ferreira, P. A. A., Lourenzi, C. R., Tiecher, T., Girotto, E., Nicoloso, F. T., Soriani, H. H., De Conti, L., Mimmo, T., Cesco, S., & Brunetto, G. (2016). The potential of Zea mays L. in remediating copper and zinc contaminated soils for grapevine production. Geoderma, 262, 52–61. https://doi.org/10.1016/j.geoderma.2015.08.015

Tripathi, R. D., Dwivedi, S., Shukla, M. K., Mishra, S., Srivastava, S., Singh, R., Rai, U. N., & Gupta, D. K. (2008). Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice (Oryza sativa L.) plants. Chemosphere, 70, 1919–1929. https://doi.org/10.1016/j.chemosphere.2007.07.038

Vanacek, P., Sebestova, E., Babkova, P., Bidmanova, S., Daniel, L., & Dvorak, P. (2018). Exploration of enzyme diversity by integrating bioinformatics with expression analysis and biochemical characterization. ACS Catalysis, 8, 2402–2412.
https://doi.org/10.1021/acscatal.7b03523

Vargas-García, M. C., Suárez-Estrella, F., López, M. J., & Moreno, J. (2012). Bioremediation of heavy metals with microbial isolates. Universidad de Almeria, Crta.

Vullo, D. L., Ceretti, H. M., Hughes, E. A., Ramyrez, S., & Zalts, A. (2008). Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E. Bioresource Technology, 99(13), 5574–5581. https://doi.org/10.1016/j.biortech.2007.10.060

Whelan, M. J., Coulon, F., Hince, G., Rayner, J., McWatters, R., Spedding, T., & Snape, I. (2015). Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions. Chemosphere, 131, 232–240. https://doi.org/10.1016/j.chemosphere.2014.10.088

Wichard, T., Bellenger, J.-P., Morel, F. M. M., & Kraepiel, A. M. L. (2009). Role of the siderophore azotobactin in the bacterial acquisition of nitrogenase metal cofactors. Environmental Science & Technology, 43(19), 7218–7224. https://doi.org/10.1021/es8037214

Yancheshmeh, J. B., Khavazi, K., Pazira, E., & Solhi, M. (2011). Evaluation of inoculation of plant growth-promoting rhizobacteria on cadmium and lead uptake by canola and barley. African Journal of Microbiology Research, 5(14), 1747–1754.

Yang, G., Chen, F., & Yang, Z. (2012). Electrocatalytic oxidation of hydrogen peroxide based on the shuttlelike Nano-CuO-Modified electrode. International Journal of Electrochemistry, 2012, 194183. https://doi.org/10.1155/2012/194183

Yin, X. X., Wang, L. H., Bai, R., Huang, H., & Sun, G. X. (2012). Accumulation and transformation of arsenic in the blue-green alga Synechocysis sp. PCC6803. Water Air and Soil Pollution, 223(3), 1183–1190. https://doi.org/10.1007/s11270-011-0936-0

Zhang, Q., & Xiu, Z. (2009). Metabolic pathway analysis of glycerol metabolism in Klebsiella pneumoniae incorporating oxygen regulatory system. Biotechnology Progress, 25, 103–115. https://doi.org/10.1002/btpr.70

Zhang, S., Wen, J., Hu, Y., Fang, Y., Zhang, H., Xing, L., Wang, Y., & Zeng, G. (2019). Humic substances from green waste compost: An effective washing agent for heavy metal (Cd, Ni) removal from contaminated sediments. Journal of Hazardous Materials, 366, 210–218. https://doi.org/10.1016/j.jhazmat.2018.11.103

Zhou, D., Li, Y., Zhang, Y., Zhang, C., Li, X., Chen, Z., Huang, J., Li, X., Flores, G., & Kamon, M. (2014). Column test-based optimization of the permeable reactive barrier (PRB) technique for remediating groundwater contaminated by landfill leachates. Journal of Contaminant Hydrology, 168, 1–16. https://doi.org/10.1016/j.jconhyd.2014.09.003

Zhu, Y., Klompe, S. E., Vlot, M., van der Oost, J., & Staals, R. H. (2018). Shooting the messenger: RNA-targetting CRISPR-Cas systems. Bioscience Reports, 38(3), BSR20170788. https://doi.org/10.1042/BSR20170788