Stability indicator for defining environmental and protective requirements for landscape ecosystems
Abstract
Methodological aspects of assessing harmful impacts on the natural environment are presented, aimed at determining the indicator of ecosystem stability. The use of such an indicator makes it possible to determine environmental changes as a result of anthropogenic activity, as well as to determine the significance of these changes. A system is presented that systematizes the variety of consequences of anthropogenic impact on CLS. A qualitative scale of reducing harmful anthropogenic impact is proposed. It is proposed to conduct assessment of the categories of significance of harmful effects and ecological risk on the basis of a comprehensive evaluation of impacts on individual storeys and subsystems in the compartment from different sources of influence, taking into account their magnitude and intensity. The corresponding scales, a way of complex formation, categories of impact significance have been developed; also, an example of constructing an environmental risk matrix has been presented.
Keyword : ecosystem stability, complex landscape system, ecological regulation, compartment, harmful impact, ecological hazard, gradient of stability change
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Aleksandrova, T. D. (1998). Normirovanie antropogenno-tehnogennyih nagruzok na landshaftyi kak nauchnaya zadacha. In Nauchnyie podhodyi k opredeleniyu norm nagruzok na landshaftyi (pp. 4–15). Moskva (in Russian).
Ali, A., Strezov, V., Davies, P., & Wright, I. (2017). Environmental impact of coal mining and coal seam gas production on surface water quality in the Sydney Basin, Australia. Environmental Monitoring and Assessment, 189(8), 408. https://doi.org/10.1007/s10661-017-6110-4
Batra, S. (2021). Toxicity mediated oxidative stress and its mitigation strategies in crop plants. Journal of Environmental Engineering and Landscape Management, 29(4), 499–508. https://doi.org/10.3846/jeelm.2021.14382
Betts, M. G., Wolf, C., Ripple, W. J., Phalan, B., Millers, K. A., Duarte, A., Butchart, S. H. M., & Levi, T. (2017). Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature, 547(7664), 441–444. https://doi.org/10.1038/nature23285
Botey, A. P., Garvin, T., & Szostak, R. (2012). Ecosystem management research: Clarifying the concept of interdisciplinary work. Interdisciplinary Science Reviews, 37(2), 161–178. https://doi.org/10.1179/0308018812z.00000000012
Boyko, T. G., & Ruda, M. V. (2021). Kiberfizychna systema dlja ocinjuvannja vplyviv vitroenergetychnyh ustanovok na komponenty dovkillja. Ukrai’ns’kyj metrologichnyj zhurnal, 1, 60–66 (in Ukrainian). https://doi.org/10.24027/2306-7039.1.2021.228245
Bubela, T., Malachivskyy, P., Pokhodylo, Y., Mykyychuk, M., & Vorobets, O. (2016). Mathematical modeling of soil acidity by the admittance parameters. Eastern-European Journal of Enterprise Technologies, 6(10–84), 4–9. https://doi.org/10.15587/1729-4061.2016.83972
Cairns, J., & Niederlehner, B. R. (1995). Ecosystem health concepts as a management tool. Journal of Aquatic Ecosystem Health, 4(2), 91–95. https://doi.org/10.1007/BF00044792
Chen, J., Su, J., Kochan, O., & Levkiv, M. (2018). Metrological software test for simulating the method of determining the thermocouple error in situ during operation. Measurement Science Review, 18(2), 52–58. https://doi.org/10.1515/msr-2018-0008
Costanza, R. (1992). Ecological economic issues and considerations in indicator development, selection, and use: toward an operational definition of system health. In D. H. McKenzie, D. E. Hyatt, & V. J. McDonald (Eds.), Ecological indicators (pp. 1491–1502). Elsevier. https://doi.org/10.1007/978-1-4615-4661-0_47
De Jong, J., & Dahlberg, A. (2017). Impact on species of conservation interest of forest harvesting for bioenergy purposes. Forest Ecology and Management, 383, 37–48. https://doi.org/10.1016/j.foreco.2016.09.016
Drever, C. R., Peterson, G., Messier, C., Bergeron, Y., & Flannigan, M. (2006). Can forest management based on natural disturbances maintain ecological resilience? Canadian Journal of Forest Research, 36(9), 2285–2299. https://doi.org/10.1139/x06-132
Dutta, J., & Singh, P. P. (2021). Air pollutants and acid precipitation. In Multidimensional approaches to impacts of changing environment on human health (pp. 3–25). CRC Press. https://doi.org/10.1201/9781003095422-1
Dzhumelia, E., & Pohrebennyk, V. (2021). Methods of soils pollution spread analysis: Case study of mining and chemical enterprise in Lviv region (Ukraine). Ecological Engineering & Environmental Technology, 22(4), 39–44. https://doi.org/10.12912/27197050/137872
Fauzi, A. I., Sakti, A. D., Robbani, B. F., Ristiyani, M., Agustin, R. T., Yati, E., Nuha, M. U., Anika, N., Putra, R., Siregar, D. I., Prasetyo, B. A., Julzarika, A., & Wikantika, K. (2021). Assessing potential climatic and human pressures in Indonesian coastal ecosystems using a spatial data-driven approach. ISPRS International Journal of Geo-Information, 10(11), 778. https://doi.org/10.3390/ijgi10110778
Fazekašová, D., Petrovič, F., Fazekaš, J., Štofejová, L., Baláž, I., Tulis, F., & Tóth, T. (2021). Soil contamination in the problem areas of agrarian Slovakia. Land, 10(11), 1248. https://doi.org/10.3390/land10111248
Fedorov, V. D., Sakharov, V. B., & Levich, A. (1982). Kolichestvennye podkhody k probleme otsenki normy i patologii ekosistem. Chelovek i biosfera, 6, 3–42 (in Russian).
Ferretti, M. (2009). Quality assurance in ecological monitoring–towards a unifying perspective. Journal of Environmental Monitoring, 11(4), 726–729. https://doi.org/10.1039/b902728a
Fränzle, O. (2010). Ecosystem organization of a complex landscape: Long-term research in the bornhöved Lake District, Germany. Springer.
Gadow, K., Álvarez González, J. G., Zhang, C., Pukkala, T., & Zhao, X. (2021). Analyzing forest ecosystems. In Sustaining forest ecosystems (pp. 81–158). Springer. https://doi.org/10.1007/978-3-030-58714-7_3
Ghadwick, M. J., & Kuylenstierna, J. G. L. (1991). Critical loads and critical levels for the effects of sulphur and nitrogen compounds. In Acid deposition: Origins, impacts and abatement strategies (pp. 279–314). Springer. https://doi.org/10.1007/978-3-642-76473-8_18
Grodzyns’kyj, M. D. (1995). Stijkist’ geosystem do antropogennyh navantazhen’. Likej (in Ukrainian).
Hof, A. R., & Hjältén, J. (2018). Are we restoring enough? Simulating impacts of restoration efforts on the suitability of forest landscapes for a locally critically endangered umbrella species. Restoration Ecology, 26(4), 740–750. https://doi.org/10.1111/rec.12628
Hu, Zh., Tereikovskyi, I., Chernyshev, D., Tereikovska, L., Tereikovskyi, O., & Wang, D. (2021). Procedure for processing biometric parameters based on wavelet transformations. International Journal of Modern Education and Computer Science, 13(2), 11–22. https://doi.org/10.5815/ijmecs.2021.02.02
Hu, Zh., Tereykovskiy, I., Tereykovska, L., & Pogorelov, V. (2017). Determination of structural parameters of multilayer perceptron designed to estimate parameters of technical systems. International Journal of Intelligent Systems and Applications, 9(10), 57–62. https://doi.org/10.5815/ijisa.2017.10.07
Ibrahim, H. G. A. (2019). Descriptive ecology approaches to an urban landscape in Qatar. Journal of Ecosystem & Ecography, 2(119). https://doi.org/10.4172/2157-7625.1000119
International Electrotechnical Commission. (2019). Risk management: Risk assessment techniques (IEC 31010:2019). https://www.iso.org/standard/72140.html
International Organization for Standardization. (2015). Environmental management systems: Requirements with guidance for use (ISO 14001:2015). https://www.iso.org/standard/60857.html
Israel, Yu. A. (1984). Ekologiya i kontrol sostoyaniya prirodnoy sredyi. Gidrometeoizdat (in Russian).
Kobza, J. (2015, June). Permanent soil monitoring system as a basic tool for protection of soils and sustainable land use in Slovakia. IOP Conference Series: Earth and Environmental Science, 25(1), 012011. https://doi.org/10.1088/1755-1315/25/1/012011
Kovačević, N., Stojiljković, A., & Kovač, M. (2019). Application of the matrix approach in risk assessment. Operational Research in Engineering Sciences: Theory and Applications, 2(3), 55–64. https://doi.org/10.31181/oresta1903055k
Krivolutskiy, D. A., & Fedorov, E. A. (1984). Printsipyi ekologicheskogo normirovaniya. In Vliyanie promyishlennyih predpriyatiy na okruzhayuschuyu sredu (pp. 104–106). Moskva (in Russian).
Krivolutskiy, D. A., Tihomirov, F. A., & Fedorov, E. A. (1987). Bioindikatsiya i ekologicheskoe normirovanieyu. In Vliyanie promyishlennyih predpriyatiy na okruzhayuschuyu sredu (pp. 18–26). Nauka (in Russian).
Kupriyanov, O., Trishch, R., Dichev, D., & Bondarenko, T. (2022). Mathematic model of the general approach to tolerance control in quality assessment. In Grabchenko’s International Conference on Advanced Manufacturing Processes (pp. 415–423). Springer. https://doi.org/10.1007/978-3-030-91327-4_41
Kvaterniuk, S., Petruk, V., Kochan, O., & Frolov, V. (2020). Multispectral ecological control of parameters of water environments using a quadrocopter. In Sustainable production: Novel trends in energy, environment and material systems (pp. 75–89). Springer. https://doi.org/10.1007/978-3-030-11274-5_6
Langlet, D., & Mahmoudi, S. (2016). EU environmental law and policy (1st ed.). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198753926.001.0001
Lee, S. H., Ji, W., Yang, H. J., Kang, S. Y., & Kang, D. M. (2017). Reclamation of mine-degraded agricultural soils from metal mining: Lessons from 4 years of monitoring activity in Korea. Environmental Earth Sciences, 76(20), 1–7. https://doi.org/10.1007/s12665-017-7076-9
Leine, R. I. (2009). The historical development of classical stability concepts: Lagrange, Poisson and Lyapunov stability. Nonlinear Dynamics, 59(1–2), 173–182. https://doi.org/10.1007/s11071-009-9530-z
Li, J., Cai, C., & Zhang, F. (2020). Assessment of ecological efficiency and environmental sustainability of the Minjiang-Source in China. Sustainability, 12(11), 4783. https://doi.org/10.3390/su12114783
Mäkká, K., Kampová, K., Loveček, T., & Petrlová, K. (2021). An environmental risk assessment of filling stations using the principles of security management. A case study in the Slovak Republic. Sustainability, 13(22), 12452. https://doi.org/10.3390/su132212452
Michanek, G., Bostedt, G., Ekvall, H., Forsberg, M., Hof, A. R., De Jong, J., Rudolphi, J., & Zabel, A. (2018). Landscape planning—paving the way for effective conservation of forest biodiversity and a diverse forestry? Forests, 9(9), 523. https://doi.org/10.3390/f9090523
Noviks, G. (2015). System analysis in the environmental science. Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference, 1, 120–129. https://doi.org/10.17770/etr2011vol1.911
Obshta, A., Bubela, T., Ruda, M., & Kochan, R. (2018). The model of environmental assessment of complex landscape systems. International Multidisciplinary Scientific GeoConference: SGEM, 18(3.2), 973–979. https://doi.org/10.5593/sgem2018/3.2/S14.125
Paul, T., & Saha, N. C. (2022). Bioremediation of heavy metals. In Biotechnology for zero waste (pp. 67–81). Wiley. https://doi.org/10.1002/9783527832064.ch5
Peltola, T., & Tuomisaari, J. (2016). Re-inventing forestry expertise: Strategies for coping with biodiversity protection in Finland. Forest Policy and Economics, 62, 11–18. https://doi.org/10.1016/j.forpol.2015.10.005
Petrosillo, I., Müller, F., Jones, K. B., Zurlini, G., Krauze, K., Victorov, S., Li, B.-L., & Kepner, W. G. (2008). Use of landscape sciences for the assessment of environmental security. Springer. https://doi.org/10.1007/978-1-4020-6594-1
Pohrebennyk, V., & Dzhumelia, E. (2020). Environmental assessment of the impact of tars on the territory of the Rozdil state mining and chemical enterprise “Sirka” (Ukraine). In Sustainable production: Novel trends in energy, environment and material systems (pp. 201–214). Springer. https://doi.org/10.1007/978-3-030-11274-5_13
Pohrebennyk, V., Koszelnik, P., Mitryasova, O., Dzhumelia, E., & Zdeb, M. (2019). Environmental monitoring of soils of post-industrial mining areas. Journal of Ecological Engineering, 20(9), 53–61. https://doi.org/10.12911/22998993/112342
Poulos, A. (2021). Radiation pollutants. In The secret life of chemicals (pp. 165–179). Springer. https://doi.org/10.1007/978-3-030-80338-4_12
Puzachenko, Yu. G. (1992). Metodologicheskie osnovaniya ekologicheskogo normirovaniya. In Ekologicheskoe normirovanie: problemyi i metodyi (pp. 122–125). Instytut Okhrany Pryrody I Zapoviednoho Dela (in Russian).
Rapport, D. J. (1995). Ecosystem services and management options as blanket indicators of ecosystem health. Journal of Aquatic Ecosystem Health, 4(2), 97–105. https://doi.org/10.1007/BF00044793
Ruda, M., Boyko, T., Chayka, O., Mikhalieva, M., & Holodovska, O. (2022). Simulation of the influence of wind power plants on the compartments of the complex landscape system. Journal of Water and Land Development, 52, 156–165. https://doi.org/10.24425/jwld.2022.140385
Ruda, M., Moroz, O., Kuz, O., & Boyko, T. (2021). Cyber-physical system of psychophysiological support of professional self-realization in professions of the ‘Man-Nature’ type in the formation of specialists for sustainable development. Sustainability, 13(14), 7858. https://doi.org/10.3390/su13147858
Schwarts, S. S. (1976). Teoreticheskie osnovyi globalnogo ekologicheskogo prognozirovaniya. Vsestoronniy analiz okruzhayuschey prirodnoy sredyi. In Trudy II Sovetsko-amerikanskogo simpoziuma (pp. 181–191) (in Russian).
Sherameti, I., & Varma, A. (2015). Heavy metal contamination of soils. Springer International Publishing. https://doi.org/10.1007/978-3-319-14526-6
Shu, H., Xiao, C. W., Ma, T., & Sang, W. G. (2021). Ecological health assessment of Chinese National Parks based on landscape pattern: A case study in Shennongjia National Park. International Journal of Environmental Research and Public Health, 18(21), 11487. https://doi.org/10.3390/ijerph182111487
Štofejová, L., Fazekaš, J., & Fazekašová, D. (2021). Analysis of heavy metal content in soil and plants in the dumping ground of magnesite mining factory Jelšava-Lubeník (Slovakia). Sustainability, 13(8), 4508. https://doi.org/10.3390/su13084508
Tang, Y., Jing, J., Zhang, Z., & Yang, Y. (2018). A quantitative risk analysis method for the high hazard mechanical system in petroleum and petrochemical industry. Energies, 11(1), 14. https://doi.org/10.3390/en11010014
Tihomirov, F. A., & Rozanov, B. G. (1985). Metodological issues of protection of soil and protection of soil and vegetation cover from protection. Ecology, 4, 3–11.
Tilman, D. (1996). Biodiversity: Population versus ecosystem stability. Ecology, 77, 350–363. https://doi.org/10.2307/2265614
Trishch, R., Nechuiviter, O., Dyadyura, K., Vasilevskyi, O., Tsykhanovska, I., & Yakovlev, M. (2021). Qualimetric method of assessing risks of low quality products. MM Science Journal, 4769–4774. https://doi.org/10.17973/MMSJ.2021_10_2021030
United Nations Economic Commission for Europe. (1991). Convention on Environmental Impact Assessment in а Transboundary Context (IAE Convention). Espoo, Finland.
Walker, B. H. (1995). Conserving biological diversty through ecosystem resilience. Conservation Biology, 9, 747–752. https://doi.org/10.1046/j.1523-1739.1995.09040747.x
Westman, W. E., & Peet, R. K. (1985). Robert H. Whittaker (1920-1980): The man and his work. Springer. https://doi.org/10.1007/978-94-009-5526-4_2
Yeromenko, V., & Kochan, O. (2013, September). The conditional least squares method for thermocouples error modeling. In IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS) (pp. 157–162), Berlin, Germany. https://doi.org/10.1109/IDAACS.2013.6662661
Yun, M., Christian, R., Kim, B. G., Almomani, B., Ham, J., Lee, S., & Kang, H. G. (2017). A software tool for integrated risk assessment of spent fuel transportation and storage. Nuclear Engineering and Technology, 49(4), 721–733. https://doi.org/10.1016/j.net.2017.01.017
Zeleňáková, M., Labant, S., Zvijáková, L., Weiss, E., Čepelová, H., Weiss, R., Fialová, J., & Minďaš, J. (2020). Methodology for environmental assessment of proposed activity using risk analysis. Environmental Impact Assessment Review, 80, 106333. https://doi.org/10.1016/j.eiar.2019.106333