Share:


Energy and exergy analysis of an air source heat pump under variable ambient conditions

    Giedrė Streckienė Affiliation
    ; Tomas Kropas Affiliation
    ; Rūta Mikučionienė Affiliation
    ; Rasa Džiugaitė-Tumėnienė Affiliation

Abstract

Air source heat pumps (ASHPs) are becoming an increasingly popular heating source for buildings. The paper presents an evaluation of the experimental data from ASHP operation during the heating season in Lithuania when the problem of the evaporator’s surface freezing is visible. The performance of the air-to-water heat pump is examined using energy and exergy analyses performed by a coefficient of performance (COP), COPCarnot, exergy efficiency, and primary energy ratio. Analysis results show that the existing difference between the ideal and actual operation of ASHP represents the demand to improve the performance of ASHP evaporator. The actual COP was from 3.5 to 4.7 times lower than the Carnot COP. At 0 °C and 95% humidity, the ASHP’s performance was least favourable, with an average exergy efficiency of 0.21 and a COP of 1.49.

Keyword : air source heat pump, thermodynamic analysis, ambient conditions, performance, exergy

How to Cite
Streckienė, G., Kropas, T., Mikučionienė, R., & Džiugaitė-Tumėnienė, R. (2024). Energy and exergy analysis of an air source heat pump under variable ambient conditions. Journal of Environmental Engineering and Landscape Management, 32(1), 12–21. https://doi.org/10.3846/jeelm.2024.20771
Published in Issue
Jan 17, 2024
Abstract Views
470
PDF Downloads
373
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Akbulut, U., Utlu, Z., & Kincay, O. (2016). Exergy, exergoenvironmental and exergoeconomic evaluation of a heat pump-integrated wall heating system. Energy, 107, 502–522. https://doi.org/10.1016/j.energy.2016.04.050

Alva, G., Lin, Y., & Fang, G. (2018). An overview of thermal energy storage systems. Energy, 144, 341–378. https://doi.org/10.1016/j.energy.2017.12.037

Amer, M., & Wang, C. C. (2017). Review of defrosting methods. Renewable and Sustainable Energy Reviews, 73, 53–74. https://doi.org/10.1016/j.rser.2017.01.120

Bonin, J. (2015). Heat pump planning handbook. Routledge. https://doi.org/10.4324/9781315708584

Çakir, U., Çomakli, K., Çomakli, Ö., & Karsli, S. (2013). An experimental exergetic comparison of four different heat pump systems working at same conditions: As air to air, air to water, water to water and water to air. Energy, 58, 210–219. https://doi.org/10.1016/J.ENERGY.2013.06.014

Carroll, P., Chesser, M., & Lyons, P. (2020). Air Source Heat Pumps field studies: A systematic literature review. Renewable and Sustainable Energy Reviews, 134, 110275. https://doi.org/10.1016/j.rser.2020.110275

Chen, S. Y. (2019). Use of green building information modeling in the assessment of net zero energy building design. Journal of Environmental Engineering and Landscape Management, 27(3), 174–186. https://doi.org/10.3846/jeelm.2019.10797

Chung, Y., Yoo, J. W., Kim, G. T., & Kim, M. S. (2019). Prediction of the frost growth and performance change of air source heat pump system under various frosting conditions. Applied Thermal Engineering, 147, 410–420. https://doi.org/10.1016/j.applthermaleng.2018.10.085

Dincer, I., & Rosen, M. A. (2015). Exergy analysis of heating, refrigerating and air conditioning: Methods and applications. Elsevier.

Dincer, I., & Abu-Rayash, A. (2020). Sustainability modeling. In Energy sustainability (pp. 119–164). Elsevier. https://doi.org/10.1016/B978-0-12-819556-7.00006-1

Dincer, I., & Rosen, M. A. (2013). Exergy analysis of thermal energy storage systems. In Exergy (pp. 133–166). https://doi.org/10.1016/B978-0-08-097089-9.00009-7

Dong, X., Tian, Q., & Li, Z. (2017). Energy and exergy analysis of solar integrated air source heat pump for radiant floor heating without water. Energy and Buildings, 142, 128–138. https://doi.org/10.1016/j.enbuild.2017.03.015

European Academies’ Science Advisory Council. (2021). Decarbonisation of buildings: For climate, health and jobs (EASAC policy report No. 43). https://easac.eu/fileadmin/PDF_s/reports_statements/Decarb_of_Buildings/EASAC_Decarbonisation_of_Buildings_Web_publication030621.pdf

EurObserv’ER. (2021). Heat pumps barometer 2021. https://www.eurobserv-er.org/heat-pumps-barometer-2021/

European Commission. (2019). The European green deal. Brussels. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2019%3A640%3AFIN

García-Gáfaro, C., Escudero-Revilla, C., Flores-Abascal, I., Hidalgo-Betanzos, J. M., & Erkoreka-González, A. (2022). A photovoltaic forced ventilated façade (PV-FVF) as heat source for a heat pump: Assessing its energetical profit in nZEB buildings. Energy and Buildings, 261, 111979. https://doi.org/10.1016/j.enbuild.2022.111979

Gupta, R., & Irving, R. (2013). Development and application of a domestic heat pump model for estimating CO2 emissions reductions from domestic space heating, hot water and potential cooling demand in the future. Energy and Buildings, 60, 60–74. https://doi.org/10.1016/j.enbuild.2012.12.037

Hwang, J., & Cho, K. (2014). Numerical prediction of frost properties and performance of fin-tube heat exchanger with plain fin under frosting. International Journal of Refrigeration, 46, 59–68. https://doi.org/10.1016/j.ijrefrig.2014.04.026

Kropas, T., Streckienė, G., & Bielskus, J. (2021). Experimental investigation of frost formation influence on an air source heat pump evaporator. Energies, 14(18), 5737. https://doi.org/10.3390/en14185737

Kropas, T., Streckienė, G., Kirsanovs, V., & Dzikevics, M. (2022). Investigation of heat pump efficiency in Baltic States using TRNSYS simulation tool. Environmental and Climate Technologies, 26(1), 548–560. https://doi.org/10.2478/rtuect-2022-0042

Lepiksaar, K., Kalme, K., Siirde, A., & Volkova, A. (2021). Heat pump use in rural district heating networks in Estonia. Environmental and Climate Technologies, 25(1), 786–802. https://doi.org/10.2478/rtuect-2021-0059

Malenković, I. (2012). Definition of performance figures for solar and heat pump systems (IEE Technical Report No. 5.1.3). http://www.estif.org/solarkeymarknew/images/downloads/QAiST/qaist%20d5.1%20tr%205.1.3%20performance%20figures.pdf

Ministry of Environment of the Republic of Lithuania. (2022). Dėl Lietuvos Respublikos aplinkos ministro 2016 m. lapkričio 11 d. įsakymo Nr. D1-754 „Dėl statybos techninio reglamento STR 2.01.02:2016 „Pastatų energinio naudingumo projektavimas ir sertifikavimas“ pakeitimo (Nr. D1-281). Vilnius.

Madonna, F., & Bazzocchi, F. (2013). Annual performances of reversible air-to-water heat pumps in small residential buildings. Energy and Buildings, 65, 299–309. https://doi.org/10.1016/j.enbuild.2013.06.016

Martinaitis, V. (2007). Termodinaminė analizė. Technika. https://doi.org/10.3846/875-S

Martinaitis, V., Streckiene, G., Bagdanavicius, A., & Bielskus, J. (2018). A comparative thermodynamic analysis of air handling units at variable reference temperature. Applied Thermal Engineering, 143, 385–395. https://doi.org/10.1016/j.applthermaleng.2018.07.122

Mateu-Royo, C., Navarro-Esbrí, J., Mota-Babiloni, A., Molés, F., & Amat-Albuixech, M. (2019). Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery. Applied Energy, 253, 113504. https://doi.org/10.1016/j.apenergy.2019.113504

Mete Ozturk, M., Doğan, B., & Berrin Erbay, L. (2020). Performance assessment of an air source heat pump water heater from exergy aspect. Sustainable Energy Technologies and Assessments, 42, 100809. https://doi.org/10.1016/J.SETA.2020.100809

Metrel. (2021). MD 9272 leakage clamp TRMS meter with power functions [Apparatus]. https://www.metrel.si/en/shop/DMM/clamp-meters/md-9272.html

MultiMeter/Datalogger EX542 specification. (2021). https://www.extech-online.com/index.php?main_page=product_info&cPath=78_16_53&products_id=248

Njoku, H. O., Ekechukwu, O. V., & Onyegegbu, S. O. (2016). Comparison of energy, exergy and entropy generation-based criteria for evaluating stratified thermal store performances. Energy and Buildings, 124, 141–152. https://doi.org/10.1016/j.enbuild.2016.04.062

Onset. (n.d.-a). Temperature/RH smart sensor (S-THB-M002) [Apparatus]. https://www.onsetcomp.com/resources/documentation/11427-man-s-thb

Onset. (n.d.-b). 12-bit temperature smart sensor (S-TMB-M017) [Apparatus]. https://www.onsetcomp.com/products/sensors/s-tmb-m0xx

Onset. (2021). No-lead water flow meter sensor (T-MINOL-130-NL) [Apparatus]. https://www.onsetcomp.com/products/sensors/t-minol-130-nl

Popiel, C. O., & Wojtkowiak, J. (1998). Simple formulas for thermophysical properties of liquid water for heat transfer calculations (from 0 °C to 150 °C). Heat Transfer Engineering, 19(3), 87–101. https://doi.org/10.1080/01457639808939929

Protective caps for capacitive humidity sensors FHA 646 E1. (2021). https://www.priniotakis.gr/catalog2/manuals/Capacitive%20humidity%20sensor,%20protective%20caps.pdf

Pyliavskyi, I., Martusenko, I., Molnar, O., Dzyana, H., & Kush­niriuk, V. (2021). Modeling ways of improving green economy and environmental protection in the context of governance. Business: Theory and Practice, 22(2), 310–317. https://doi.org/10.3846/btp.2021.13336

Rafati Nasr, M., Fauchoux, M., Besant, R. W., & Simonson, C. J. (2014). A review of frosting in air-to-air energy exchangers. Renewable and Sustainable Energy Reviews, 30, 538–554. https://doi.org/10.1016/j.rser.2013.10.038

Rimbala, J., Votava, J., & Kyncl, J. (2019). Assessment of energy consumption in the residential building with a heat pump. In Proceedings of the 2019 20th International Scientific Conference on Electric Power Engineering (pp. 1–5). IEEE. https://doi.org/10.1109/EPE.2019.8778066

Shao, S., Zhang, H., Fan, X., You, S., Wang, Y., & Wei, S. (2021). Thermodynamic and economic analysis of the air source heat pump system with direct-condensation radiant heating panel. Energy, 225, 120195. https://doi.org/10.1016/j.energy.2021.120195

Song, M., Deng, S., Dang, C., Mao, N., & Wang, Z. (2018). Review on improvement for air source heat pump units during frosting and defrosting. Applied Energy, 211, 1150–1170. https://doi.org/10.1016/j.apenergy.2017.12.022

Wang, F., Zhao, R., Xu, W., Huang, D., & Qu, Z. (2021). A heater-assisted air source heat pump air conditioner to improve thermal comfort with frost-retarded heating and heat-uninterrupted defrosting. Energies, 14(9), 1–13. https://doi.org/10.3390/en14092646

Wang, Y., Ye, Z., Song, Y., Yin, X., & Cao, F. (2020). Energy, exergy, economic and environmental analysis of refrigerant charge in air source transcritical carbon dioxide heat pump water heater. Energy Conversion and Management, 223, 113209. https://doi.org/10.1016/j.enconman.2020.113209

Willem, H., Lin, Y., & Lekov, A. (2017). Review of energy efficiency and system performance of residential heat pump water heaters. Energy and Buildings, 143, 191–201. https://doi.org/10.1016/j.enbuild.2017.02.023

Witkowska, A., Krawczyk, D. A., & Rodero, A. (2021). Analysis of the heat pump market in Europe with a special regard to France, Spain, Poland and Lithuania. Environmental and Climate Technologies, 25(1), 840–852. https://doi.org/10.2478/rtuect-2021-0063