Share:


Analysis of reinforcement prestressing impact on the bearing capacity of the dapped-ends

Abstract

The article analyzes a prestressed reinforced concrete dapped-end beam of a rectangular cross-section. The negative effect of reinforcement prestressing on the bearing capacity of the dapped-end is analyzed. The numerical beam model is made based on an experiment and a nonlinear analysis is performed using the DIANA FEA software package to determine the effect of different intensity of reinforcement prestressing on the bearing capacity of the dapped-end beam. The results are compared with analytical calculations and the behavior described in the literature. The prestressing of the reinforcement is shown to reduce the bearing capacity of the dapped-end when tensioned reinforcement is not extended to the end of the beam above the notch. The load capacity of the numerical model is reduced by 9.67% and reduced by 25% based on analytical calculations. When designing dapped-end beams, it is necessary to assess the effect of reinforcement prestressing on the bearing capacity and cracking.


Article in Lithuanian.


Iš anksto įtemptos armatūros įtempimo įtakos atraminio mazgo su įpjova laikomajai galiai analizė


Santrauka


Straipsnyje analizuojama surenkamoji iš anksto įtempta stačiakampio skerspjūvio gelžbetoninė sija su įpjova atraminėje zonoje. Tiriamas neigiamas armatūros įtempimo poveikis atraminio mazgo su įpjova laikomajai galiai. Sudaromas skaitinis sijos modelis grindžiamas eksperimentiniu bandiniu ir atliekama netiesinė analizė naudojant DIANA FEA programinį paketą, siekiant nustatyti skirtingo armatūros įtempimo intensyvumo poveikį mazgo laikomajai galiai. Rezultatai lyginami su analitiniais skaičiavimais ir literatūroje aprašoma elgsena. Nustatyta, kad armatūros įtempimas smarkiai mažina atraminio mazgo su įpjova laikomąją galią, kai įtempta armatūra nepratęsiama iki sijos galo virš įpjovos. Skaitinio modelio laikomoji galia dėl įtempimo sumažinama 9,67 %, o analitiniais skaičiavimais – 25 %. Projektuojant sijas su įpjova atraminiame mazge, būtina įvertinti įtemptosios armatūros poveikį mazgo laikomajai galiai ir pleišėjimui.


Reikšminiai žodžiai: iš anksto įtemptas gelžbetonis, jungtis su įpjova, sija su įpjova atraminėje zonoje, netiesinė analizė, skaitinė analizė, skaitinis modelis, surenkamoji gelžbetoninė sija.

Keyword : prestressed reinforced concrete, dapped-end beam, half-joint, nonlinear analysis, numerical analysis, numerical model, precast reinforced concrete beam

How to Cite
Masėnas, V. (2023). Analysis of reinforcement prestressing impact on the bearing capacity of the dapped-ends. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 15. https://doi.org/10.3846/mla.2023.17031
Published in Issue
Mar 15, 2023
Abstract Views
324
PDF Downloads
307
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Al-Khazraji, S. D. M. (2014). Response of dapped-end prestressed concrete girders to static and impact loads [PhD thesis]. University of Baghdad, Iraq.

Aswin, M., Mohammed, B. S., Liew, M. S., & Syed, Z. I. (2015). Root cause of reinforced concrete dapped-end beams failure. International Journal of Applied Engineering Research, 10(22), 42927–42933.

Brinkley, F. M. (2013). Behavior of prestressed, precast concrete thin-stemmed members with dapped ends [M.Sc. thesis]. North Carolina State University, USA.

DIANA FEA BV. (2015a). Compressive behavior. https://manuals.dianafea.com/d100/MatLib/node328.html

DIANA FEA BV. (2015b). Tensile behavior. https://manuals.dianafea.com/d96/MatLib/node84.html

European Committee for Standardization. (2004). Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules for buildings (EN 1992-1-1). https://www.phd.eng.br/wp-content/uploads/2015/12/en.1992.1.1.2004.pdf

Hamoudi, A. A., & Phang, M. K. S. (1974). Shear strength of post-tensioned daps in prestressed concrete beams. Journal of the Structural Division, 100(12), 2403–2418. https://doi.org/10.1061/jsdeag.0003946

Lu, W. Y., Lin, I. J., Hwang, S. J., & Lin, Y. H. (2003). Shear strength of high‐strength concrete dapped‐end beams. Journal of the Chinese Institute of Engineers, 26(5), 671–680. https://doi.org/10.1080/02533839.2003.9670820

Mattock, A. H., & Chan, T. C. (1979). Design and behavior of dapped-end beams. PCI Journal, 24(6), 28–45. https://doi.org/10.15554/pcij.11011979.28.45

Mattock, A. H., & Theryo, T. S. (1986). Strength of precast prestressed concrete members with dapped ends. PCI Journal, 31(5), 58–75. https://doi.org/10.15554/pcij.09011986.58.75

Moreno-Martínez, J. Y., & Meli, R. (2014). Experimental study on the structural behavior of concrete dapped-end beams. Engineering Structures, 75, 152–163. https://doi.org/10.1016/j.engstruct.2014.05.051

Nanni, A., & Huang, P.-C. (2002). Validation of an alternative reinforcing detail for the dapped ends of prestressed double tees. PCI Journal, 47(1), 38–49. https://doi.org/10.15554/pcij.01012002.38.49

Valivonis, J., Jonaitis, B., Zavalis, R., Skuturna, T., & Šneideris, A. (2014). Flexural capacity and stiffness of monolithic biaxial hollow slabs. Journal of Civil Engineering and Management, 20(5), 693–701. https://doi.org/10.3846/13923730.2014.917122

Werner, M. P., & Dilger, W. H. (1973). Shear design of prestressed concrete stepped beams. PCI Journal, 18(4), 37–49. https://doi.org/10.15554/pcij.07011973.37.49