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Abstract. The dimension reduction for the viscous flows in thin tube structures
leads to equations on the graph for the macroscopic pressure with Kirchhoff type
junction conditions in the vertices. Non-Newtonian rheology of the flow generates
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differential equations on the graph is introduced and numerically tested.
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1 Introduction and main definitions

The Newtonian flows in a network of tubes (tube structures) were considered
in [2, 5, 13, 15, 16, 18, 19]. These domains are finite connected unions of thin
cylinders (in the two-dimensional case, respectively, thin rectangles). Each
tube structure is represented by its graph: if the diameter of cross-sections of
cylinders tends to zero, then the tubes degenerate and ”tend” to the edges of

■
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the graph. In the case of the stationary Navier-Stokes equations, set in a thin
structure, for the pressure one can derive second order ordinary differential
equations at the edges of the graph and some Kirchhoff-type junction condi-
tions at the nodes (see [2, 13, 15, 17]). The Kirchhoff junction conditions were
introduced for some physiological applications in classical works [10,11].

In the non-stationary case for the initial-boundary value problem for the
Navier-Stokes system, the equation on the graph becomes non-stationary and
non-local in time (see [19]). For the periodic in time setting, it was studied
in [20]. In [7], a linear stationary equation in an infinite fractal type graph is
considered.

Nonlinear equations on the graph are generated by the problems in thin
tube structures for viscous flows with non-Newtonian rheology. The case of
the Stokes equations with the shear rate dependent viscosity was considered in
the set of three papers [21, 22, 23], where the complete asymptotic expansion
of the solution was constructed (also see [3, 4] for the Bingham law rheology
and [9] for the power law rheology). In particular, in [22] a nonlinear equation
on the graph is studied. Its unknown function is the macroscopic pressure
in the network of thin pipes. This problem is crucial for the construction of
asymptotic approximations of the solution of the Stokes type equation in tube
structures because it gives the leading term. These problems on the graph need
fast effective solvers. The present paper introduces a new numerical method of
its solution, formulates the convergence theorem and provides numerical tests.

Other one-dimension models for the blood flow applications were derived
from the general conservation laws in [6, 12,25].

2 Thin tube structure and its graph

For the reader’s convenience we remind the definitions of the tube structure
and its graph given in [13].

Definition 1. Let O1, O2, ..., ON be N different points in Rn, n = 2, 3, and
e1, e2, ..., eM be M closed segments each connecting two of these points (i.e.,
each ej = OijOkj

, where ij , kj ∈ {1, ..., N}, ij ̸= kj). All points Oi are supposed
to be the ends of some segments ej . The segments ej are called edges of the
graph. A point Oi is called a node, if it is the common end of at least two
edges, and Oi is called a vertex, if it is the end of the only one edge. Any two
edges ej and ei can intersect only at the common node. The set of vertices is
supposed to be non-empty.

Denote B = ∪M
j=1ej the union of edges and assume that B is a connected

set. The graph G is defined as the collection of nodes, vertices and edges (see
Figure 1).

Let e be some edge, e = OiOj . Consider two Cartesian coordinate systems

in Rn. The first one has the origin in Oi and the axis Oix
(e)
1 has the direction of

the ray [OiOj); the second one has the origin in Oj and the opposite direction,

i.e. Oix̃
(e)
1 is directed over the ray [OjOi).
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Figure 1. Graphs of tube structure.

Below, in various situations we choose one or another coordinate system
denoting the local variable in both cases by x(e) and pointing out which end is
taken as the origin of the coordinate system.

With every edge ej we associate a bounded domain σj ⊂ Rn−1 containing
the origin O and having C4-smooth boundary ∂σj , j = 1, ...,M . For every

edge ej = e and associated σj = σ(e) we denote by σ
(e)
ε the set

{
x(e)′ ∈ Rn−1 :

x(e)′/ε ∈ σ(e)
}
, and by Π

(e)
ε the cylinder (”tube”)

Π(e)
ε =

{
x(e) ∈ Rn : x

(e)
1 ∈ (0, |e|), x(e)′/ε ∈ σ(e)

}
,

where x(e)′ = (x
(e)
2 , ..., x

(e)
n ), |e| is the length of the edge e and ε > 0 is a small

parameter. Notice that the edges ej and Cartesian coordinates of nodes and
vertices Oj , as well as the domains σj , do not depend on ε.

Let O1, ..., ON1
be nodes and ON1+1, ..., ON be vertices. Let ω1, ..., ωN

be bounded independent of ε domains in Rn; introduce the nodal domains
ωj
ε = {x ∈ Rn :

x−Oj

ε ∈ ωj}.

Definition 2. By a tube structure we call the following domain (see Figure 2)

Bε =
( M⋃
j=1

Π(ej)
ε

)⋃( N⋃
j=1

ωj
ε

)
.

Suppose that it is a connected set and that the boundary ∂Bε of Bε is C4-
smooth.

The fourth order smoothness of the boundary is required to prove the existence
of the solution to the non-Newtonian problem, see [23].

Consider a node or a vertex Ol and all edges ej having Ol as one of their
end points. We call a bundle of edges Bl the union of all these edges, i.e.,
Bl = ∪j:Ol∈ejej .

3 Motivation: a non-Newtonian flow in network of tubes

Let n = 2, 3, ν0, λ > 0 be positive constants. Let ν be a bounded C3-smooth
function Rn(n+1)/2 → R such that for all y ∈ Rn(n+1)/2,

|ν(y)| ≤ C, |∇βν(y)| ≤ C, β = 1, 2, 3,

Math. Model. Anal., 28(4):581–595, 2023.
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Figure 2. Fluid flow tube structure.

where C is a positive constant.
In the tube structure Bε, consider the steady state boundary value problem

for the non-Newtonian fluid motion equations −div((ν0 + λν(γ̇(v))D(v)) +∇p = 0, x ∈ Bε,
divv = 0, x ∈ Bε,
v|∂Bε

= εg,
(3.1)

where D(v) is the strain rate matrix with the elements dij = 1
2 (

∂vi

∂xj
+

∂vj
∂xi

),

γ̇(v) = (d12, d13, d23, d11, d22, d33) if n = 3 and γ̇(v) = (d12, d11, d22) if n = 2.
Assume that the fluid velocity g at the boundary ∂Bε has the following

structure: g = 0 everywhere on ∂Bε except for the set γN1+1
ε , ..., γN

ε , where
γj
ε = ∂Bε ∩ ∂ωj

ε, j = N1 + 1, . . . , N , i.e.,

g(x)|γj
ε
= gj ((x−Oj)/ε)

∣∣
γj
ε
, j = N1 + 1, ..., N,

g(x, t)
∣∣
∂Bε\(∪N

j=N1+1γ
j
ε)

= 0,

where gj ∈ H5/2(γj), γj = ε−1(γj
ε −Oj) the corresponding dilated part of the

boundary, g ∈ H5/2(∂Bε).
Let e = eOj be the edge with the end at the vertex Oj and let x(e) be the

Cartesian coordinates corresponding to the origin Oj and the edge e, i.e., x(e) =
P(e)(x − Oj), P(e) is the orthogonal matrix relating the global coordinates x
with the local ones x(e). Denote g(e) = P(e)gj .

Let

F j
ε = ε

∫
γj
ε

g(x) · n(x)dS = ε

∫
γj
ε

gj ((x−Oj)/ε) · n(x)dS

= εn
∫
γj

ĝj
n(y

(e)′)dy(e)
′
= εnFj , j = N1 + 1, ..., N,

where n is the unit outward (with respect to Bε) normal vector to γj
ε , y(e) =

x(e)/ε, ĝj(y(e)) = gj((P(e))T y(e)) (here ”T” denotes the transposition), Fj

does not depend on ε. Assume the compatibility condition for the flow rates
Fj :

∑J
j=1 Fj = 0.

An asymptotic analysis of this problem with small parameter ε leads to a
nonlinear elliptic problem on the graph [21,22,23]. The solution of this problem
determines the leading term of the pressure in problem (3.1).
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Let us introduce this problem on the graph.

4 Equation on the graph

For any edge e with associated cross-section σ
(e)
ε we introduce a function F

σ
(e)
ε

such that

F
σ
(e)
ε

(α) =

∫
σ
(e)
ε

vPα
(x′)dx′,

where vPα
is a solution of the boundary value problem{
− 1

2divx′
(
(ν0 + λν(γ̇P (vPα)))∇x′vPα

)
= α, x′ ∈ σ

(e)
ε ,

vPα
|
∂σ

(e)
ε

= 0.
(4.1)

If λ = 0 then F
σ
(e)
ε

is a linear function, equal to κ
σ
(e)
ε

α, where κ
σ
(e)
ε

is a positive

constant. For any λ denote G
σ
(e)
ε

(α) = F
σ
(e)
ε

(α)− κ
σ
(e)
ε

α.

Here γ̇P (vPα)=( 12∇x′vPα
, 0, 0) if n=2, γ̇P (vPα

)=( 12∇x′vPα
, 0, 0, 0, 0) if n=3,

and α is a given pressure slope. In what follows, we omit the subscript ε.
With the above notations, consider the following problem on the graph B:

given constants Fl, l = N1 + 1, ..., N , such that
∑N

l=N1+1 Fl = 0 and constants
clj , l = 1, ..., N1, (here, for any l subscript, j is such that the edges ej have an

end point Ol), find a function p which is affine with respect to x
(ej)
1 ,

p(x
(ej)
1 ) = −αjx

(ej)
1 + aj ,

such that

∂

∂x
(ej)
1

(
Fσj (−

∂p

∂x
(ej)
1

(x
(ej)
1 ))

)
= 0, x

(ej)
1 ∈ (0, |ej |),∑

ej :Ol∈ej

Fσj
(− ∂p

∂x
(ej)
1

(0)) = 0, l = 1, ..., N1,

Fσj
(− ∂p

∂x
(ej)
1

(0)) = −Fl, l = N1 + 1, ..., N, Ol ∈ ej ,

p(x
(ej)
1 = 0)− p(x

(es)
1 = 0) = clj , ej : Ol ∈ ej , l = 1, ..., N1,

p(ON ) = 0.

(4.2)

The fourth condition means that the solution p may have prescribed jumps
clj at the nodes Ol ∈ ej , l = 1, ..., N1, so that for a fixed node Ol at the ends

of different edges ej (when the local variable x
(ej)
1 is equal to 0) the solution p

has its value which differs from the value of p at the end of the selected edge
es and the difference is equal to clj . For the leading term clj = 0, and so p is
continuous on the graph. However for the further terms clj may be different
from zero.

Remark 1. In [21, 22, 23] it is proved that for any α0 > 0, C > 0 there ex-
ists λ0 > 0 such that for |λ| ≤ λ0, CGσ(e) is a contraction on the interval
[−α0, α0], and there exists a solution to (4.2), unique in some ball BR = {q ∈

Math. Model. Anal., 28(4):581–595, 2023.
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HON
(B), ∥q∥H(B) ≤ R}. Here H(B) is the space of functions defined on the

graph, belonging to H1(ej) on every edge ej of the graph, and HON
(B) is the

subspace of functions from H(B) vanishing at ON ; the space H(B) is supplied
with the norm defined by the relation:

∥q∥2H(B) =

M∑
j=1

∥q∥2H1(ej)
.

We will also consider the subspaces H1(B) of H(B) and H1
ON

(B) of HON
(B)

consisting of continuous on B functions, without gaps at the nodes.

The proof of the existence of the solution to problem (4.2) is based on the
fixed point method applied in some ball BR in the space H(B). Every iteration
is related to the following linear problem.

For f
(ej)
0 , f

(ej)
1 ∈ L2(ej), find p ∈ H(B) such that

− ∂

∂x
(ej)
1

(
κσj

(
∂p

∂x
(ej)
1

(x
(ej)
1 ))

)
= f

(ej)
0 − ∂f

(ej)
1

∂x
(ej)
1

, x
(ej)
1 ∈ (0, |ej |),

−
∑

ej :Ol∈ej

κσj
(

∂p

∂x
(ej)
1

(0)) = −
∑

ej :Ol∈ej

f
(ej)
1 (0), l = 1, ..., N1,

−κσj
(

∂p

∂x
(ej)
1

(0)) = −Fl − f
(ej)
1 (0), l = N1 + 1, ..., N, Ol ∈ ej ,

p(x
(ej)
1 = 0)− p(x

(es)
1 = 0) = clj , ej : Ol ∈ ej , l = 1, ..., N1,

p(ON ) = 0.

(4.3)

Let us describe a change of the unknown function p which allows to reduce
problem (4.3) to a problem of the same type but for an unknown function
continuous on the graph. Let ζ be a C3-smooth function defined on [0,+∞)
equal to zero on [0, 1/6] and equal to one on [1/3,+∞). Introducing on every

edge ej function
(
1−ζ

(
x
(ej)
1 /|ej |

))
clj we change the unknown function p on the

edge ej (j ̸= s) by p̃ = p−
(
1− ζ

(
x
(ej)
1 /|ej |

))
clj . We get for the new unknown

function p̃(e). Equation (4.3) with new right-hand sides

f̃ (ej)(x
(ej)
1 ) = f

(ej)
0 (x

(ej)
1 )− ∂f

(ej)
1

∂x
(ej)
1

(x
(ej)
1 )− κσj |ej |−2ζ ′′

(x(ej)
1

|ej |

)
clj .

Function p̃ is continuous on B and satisfies the following variational formulation:

M∑
j=1

|ej |∫
0

κσj (
∂p̃

∂x
(ej)
1

(x
(ej)
1 ))

∂q

∂x
(ej)
1

dx
(ej)
1 +

N∑
l=N1+1

Fl q(Ol)

=
M∑
j=1

|ej |∫
0

(f̃
(ej)
0 (x

(ej)
1 )q(x

(ej)
1 ) + f

(ej)
1 (x

(ej)
1 )

∂q

∂x
(ej)
1

)dx
(ej)
1

(4.4)

for all q ∈ H1
ON

(B). Here

f̃
(ej)
0 (x

(ej)
1 ) = f

(ej)
0 (x

(ej)
1 )− κσj |ej |−2ζ ′′

(
x
(ej)
1 /|ej |

)
clj .
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It is supposed that the following compatibility condition holds:

M∑
i=1

|ei|∫
0

f
(ei)
0 dx

(ei)
n +

N∑
l=N1+1

Fl = 0.

Treating the left-hand side of (4.4) as an inner product in the space H1
ON

(B)
and its right-hand side as a bounded linear functional we apply the Riesz the-
orem and prove that this problem admits a unique solution. Moreover, taking
the test function q = p̃ and applying the Cauchy-Buniakovsky-Schwarz in-
equality, we prove that there exists a constant CB depending on B only, such
that

∥p∥H(B) ≤CB

(
∥f̃0∥L2(B) + ∥f̃1∥L2(B)

+

N1∑
i=1

∑
j:ej :Ol∈ej ;ej=ejs

|cij |+
( N−1∑
l=N1+1

|Fl|2
)1/2)

. (4.5)

For more details, see [17].

Remark 2. Note that if for any edge e, f
(e)
0 = 0 and f

(e)
1 = const, then on each

edge e the solution p is an affine function.

5 Iterative methods to solve the equation on the graph

5.1 Classical fixed point method

Denote by HL(B) the subspace of H(B) consisting of functions linear at every
edge e. Consider the mapping L̃: HL(B) ∩ BR → HL(B) such that L̃p is a
solution of the linear problem on the graph:

−κj
∂2L̃p
∂x

(ej)2
1

= − ∂

∂x
(ej)
1

(
Gσj (−

∂p

∂x
(ej)
1

(x
(ej)
1 ))

)
, x

(ej)
1 ∈ (0, |ej |),

−
∑

ej :Ol∈ej

κj
∂L̃p
∂x

(ej)
1

(0) = −
∑

ej :Ol∈ej

Gσj (−
∂p

∂x
(ej)
1

(0)), l = 1, ..., N1,

−κj
∂L̃p
∂x

(ej)
1

(0) = −Gσj
(− ∂p

∂x
(ej)
1

(0))− Fl, l = N1 + 1, ..., N, Ol ∈ ej ,

L̃p(x(ej)
1 = 0)− L̃p(x(es)

1 = 0) = clj , ej : Ol ∈ ej , l = 1, ..., N1,

L̃p(ON ) = 0.

This problem is an elementary iteration to solve problem (4.2).

Applying Remark 1, we get that there exists λ0 such that for all |λ| ≤ λ0,
L̃ is a contraction in HL(B) ∩ BR. Therefore, problem (4.2) can be solved by
the fixed point iterations converging for any initial approximation from BR, for

Math. Model. Anal., 28(4):581–595, 2023.
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example, p0 = 0. The iterations are defined as follows: pk+1 = L̃pk, i.e.,

−κj
∂2pk+1

∂x
(ej)2
1

= − ∂

∂x
(ej)
1

(
Gσj

(− ∂pk

∂x
(ej)
1

(x
(ej)
1 ))

)
, x

(ej)
1 ∈ (0, |ej |),

−
∑

ej :Ol∈ej

κj
∂pk+1

∂x
(ej)
1

(0) = −
∑

ej :Ol∈ej

Gσj
(− ∂pk

∂x
(ej)
1

(0)), l = 1, ..., N1,

−κj
∂pk+1

∂x
(ej)
1

(0) = −Gσj
(− ∂pk

∂x
(ej)
1

(0))− Fl, l = N1 + 1, ..., N, Ol ∈ ej ,

pk+1(x
(ej)
1 = 0)− pk+1(x

(es)
1 = 0) = clj , ej : Ol ∈ ej , l = 1, ..., N1,

pk+1(ON ) = 0.
(5.1)

Each piecewise-affine function p ∈ HL(B)∩BR is in one-to-one correspondence
with the set of values of p in the ends of the edges e, so that (5.1) is equivalent
to a linear system of equations with inversible matrix M. So, it can be solved
by applying the LU -factorization of M (calculated only once for the whole
chain of iterations) and then solving the two standard triangular systems of
equations at each step of iterations. However, for large N and sparse matrix
M, the GMRES method for each iteration may be more effective.

5.2 Fixed point method with preconditioner

Consider a more robust iterative method: given a positive number τ (further
called ”artificial time”), calculate recurrently

−κj
∂2(pk+1 − pk)

∂x
(ej)2
1

= −τ
∂

∂x
(ej)
1

(
Fσj

(− ∂pk

∂x
(ej)
1

(x
(ej)
1 ))

)
, x

(ej)
1 ∈ (0, |ej |),

−
∑

ej :Ol∈ej

κj
∂(pk+1 − pk)

∂x
(ej)
1

(0) = −τ
∑

ej :Ol∈ej

Fσj (−
∂pk

∂x
(ej)
1

(0)), l = 1, ..., N1,

−κj
∂(pk+1 − pk)

∂x
(ej)
1

(0)=−τ(Fσj
(− ∂pk

∂x
(ej)
1

(0)) + Fl), l=N1 + 1, ..., N,Ol ∈ ej ,

pk+1(x
(ej)
1 = 0)− pk+1(x

(es)
1 = 0) = clj , ej : Ol ∈ ej , l = 1, ..., N1,

pk+1(ON ) = 0.
(5.2)

Let us analyse for what values of τ this method converges. Let λ be a
positive constant such that CBGσ(e) is a contraction with factor ρ. Let p be the
exact solution of problem (4.2). Then, evidently, the difference qk = pk − p is
a solution of the problem


−κj

∂2(qk+1 − qk)

∂x
(ej)2
1

=−τ
∂

∂x
(ej)
1

(
Fσj

(− ∂pk

∂x
(ej)
1

(x
(ej)
1 ))−Fσj

(− ∂p

∂x
(ej)
1

(x
(ej)
1 ))

)
,

x
(ej)
1 ∈ (0, |ej |),

−
∑

ej :Ol∈ej

κj
∂(qk+1−qk)

∂x
(ej)
1

(0)=−τ
∑

ej :Ol∈ej

(
Fσj

(− ∂pk

∂x
(ej)
1

(0))−Fσj
(− ∂p

∂x
(ej)
1

(0))
)
,
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l = 1, ..., N1,

−κj
∂(qk+1 − qk)

∂x
(ej)
1

(0) = −τ
(
Fσj (−

∂pk

∂x
(ej)
1

(0))−Fσj (−
∂p

∂x
(ej)
1

(0))
)
,

l = N1 + 1, ..., N, Ol ∈ ej ,

qk+1(x
(ej)
1 = 0)− qk+1(x

(es)
1 = 0) = 0, ej : Ol ∈ ej , l = 1, ..., N1,

qk+1(ON ) = 0,

i.e.,

−κj
∂2(qk+1 − (1− τ)qk)

∂x
(ej)2
1

= −τ
∂

∂x
(ej)
1

(
Gσj

(− ∂pk

∂x
(ej)
1

(x
(ej)
1 ))

−Gσj
(− ∂p

∂x
(ej)
1

(x
(ej)
1 ))

)
, x

(ej)
1 ∈ (0, |ej |),

−
∑

ej :Ol∈ej

κj
∂(qk+1 − (1− τ)qk)

∂x
(ej)
1

(0) = −τ
∑

ej :Ol∈ej

(
Gσj

(− ∂pk

∂x
(ej)
1

(0))

−Gσj
(− ∂p

∂x
(ej)
1

(0))
)
, l = 1, ..., N1,

−κj
∂(qk+1 − (1− τ)qk)

∂x
(ej)
1

(0) = −τ
(
Gσj (−

∂pk

∂x
(ej)
1

(0))− Gσj (−
∂p

∂x
(ej)
1

(0))
)
,

l = N1 + 1, ..., N, Ol ∈ ej ,

(qk+1 − (1− τ)qk)(x
(ej)
1 = 0)− (qk+1 − (1− τ)qk)(x

(es)
1 = 0) = 0,

ej : Ol ∈ ej , l = 1, ..., N1,
(qk+1 − (1− τ)qk)(ON ) = 0.

Applying for qk+1−(1−τ)qk the estimate (4.5) and taking into consideration
that CBG is a contraction with the contraction factor ρ, we get

∥qk+1 − (1− τ)qk∥H(B) ≤CBτ∥Gσj (−
∂pk

∂x
(ej)
1

(x
(ej)
1 ))− Gσj (−

∂p

∂x
(ej)
1

(x
(ej)
1 ))∥L2(B)

≤ρτ∥qk∥L2(B).

Therefore,

∥qk+1∥H(B) ≤ (1− τ)∥qk∥H(B) + τρ∥qk∥H(B).

Note that for sufficiently small λ, we have ρ < 1. In this case, sequence (5.2)
converges to the exact solution to problem (4.2) due to Banach’s fixed point
theorem.

The choice of parameter τ can be optimized to ensure the fastest conver-
gence rate if some additional information on the spectrum of the linearized
problem is known (see, for instance, [1], Chapter VI; [26], Section 5.8; or [14],
Section 1.1.1).

6 Numerical experiments

To illustrate the implementation of the iterative method and to test its ac-
curacy, it was investigated for two graph examples. To describe the flow, we
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consider a real life blood rheology corresponding to the non-Newtonian Carreau
law [8]

ν0 + λν(γ̇) = 0.00345 + 0.05255(1 + (3.313γ̇)2)−0.3216 Pa · s.

To define the function F
σ
(e)
ε

(α), we assume that the cylinders of the tube

structure have a round shape of cross-sections, so that σ
(e)
ε is a disk. To get

this relation, one should solve problem (4.1) for all α on the cross-section of
each tube. Instead, we provided the direct COMSOL 3D simulation of the non-
Newtonian flow through a cylindric tube of the length 0.1 m and diameter 0.01
m for a set of values of α. On the lateral boundary of the cylinder, the no-slip
boundary condition was set, while on the inflow and outflow the normal velocity
corresponding to the given flux was defined. We found out that F

σ
(e)
ε

(α) can

be approximated as follows:

Fσ(α) = 3.3372 · 10−10 · α1.4164m3/s.

 

Figure 3. Level surfaces of the velocity in a tube.

In Figure 3, one can see that the level surfaces of the velocity are parallel
everywhere except for the small zones near the bases of the cylinder (boundary
layer zones). The smallness of the boundary layer zones confirms the asymp-
totic analysis developed in [23] in the case when the thin tube structure is
presented by one thin cylinder. According to this analysis on the cross-section
in the middle of the tube, we obtain the solution of the corresponding problem
(4.1). Figure 4 shows the computed relation between the flux and the pressure
slope for several values of the pressure slope.

To fit it for a tube σε with diameter equal to 0.01ε m, the following property
(see [22]) is employed:

Fσε(x) = εnFσ(εx).
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Figure 4. Curve flux/pressure slope. Continuous line corresponds to the interpolation,
while the dashed line is defined by the least square method.

6.1 A simple graph example

First, the iterative algorithm was tested for a model example pictured in Fig-
ure 5.

Figure 5. First graph example with 6 nodes/vertices Oi and 6 edges ej .

The diameters of the vessels are assumed to be equal to 10−3 m and their
lengths to 10−2 m. For realistic fluxes, the following boundary conditions
are used: F ε

1 = −3.75 · π · 10−8, F ε
4 = 1.25 · π · 10−8, F ε

6 = 2.5 · π · 10−8,
F ε
2 = F ε

3 = F ε
5 = 0.

Table 1 below shows values of nodes/vertices Oi computed with the iterative
algorithm. An exact solution is presented as well, which was found using the
MATLAB nonlinear equations solver Fsolve. Note that these results are subject
to one predetermined unknown (O1 in this case), which is required for a unique
solution to exist.

6.2 A realistic graph example

Next, the iterative algorithm was tested on a realistic graph of blood vessels.
A segment of network from [24] was used with realistic lengths, while the di-
ameters were simplified to all equal 10−4 m. Figure 6 below depicts the graph
of this vessel network.
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Table 1. Values of graph points Oi for the first example. The ”Exact” line gives the
solution found with MATLAB nonlinear equations solver Fsolve, while others show results
acquired with the proposed iterative method. Here, equations were scaled by 1010 and for
the optimal convergence rate, the step size in artificial time was taken equal to 1/22.

O1 O2 O3 O4 O5 O6

Exact 0 6.2919 9.6323 12.5292 10.6382 15.3639
Iteration 1 0 5.3550 7.7350 9.5200 8.3300 11.9000
Iteration 2 0 6.4484 9.7529 12.4238 10.6490 15.3893
Iteration 3 0 6.2588 9.6151 12.4800 10.5902 15.3149
Iteration 4 0 6.2987 9.6445 12.5373 10.6412 15.3669
Iteration 5 0 6.2906 9.6326 12.5289 10.6357 15.3613
Iteration 6 0 6.2922 9.6331 12.5299 10.6382 15.3638
Iteration 7 0 6.2919 9.6324 12.5293 10.6381 15.3637
Iteration 8 0 6.2920 9.6323 12.5292 10.6382 15.3639
Iteration 9 0 6.2919 9.6323 12.5292 10.6382 15.3639
Iteration 10 0 6.2919 9.6323 12.5292 10.6382 15.3639

Figure 6. Second graph example with 23 nodes/vertices Oi and 24 edges ej .

All values of F ε
i were taken zero, except for F ε

1 = −8π · 10−16, F ε
6 =

3 · π · 10−16, F ε
9 = 1.5 · π · 10−16, F ε

12 = 4 · π · 10−17 and F ε
20 = 3 · π · 10−16. The

iterative algorithm was used to acquire values of Oi, i = 2, . . . , 23. The results
are presented in the following Table 2.

7 Conclusions

The paper introduces and analyses the convergence of numerical methods to
solve a nonlinear equation on the graph appearing in the modeling of non-
Newtonian flows in thin tube structures. The real life rheology for the blood
flow in a realistic network of blood vessels is simulated. In future, we intend
to study numerically the influence of the choice of the parameter τ on the
convergence rate and its optimization.
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Table 2. Values of graph points Oi for the second example. The ”Exact” column gives the
solution found with MATLAB nonlinear equations solver Fsolve, while others present results
acquired with the proposed iterative method. Here, equations were scaled by 1019 and the
step size in artificial time was taken equal to 1/58.

Exact Iter. 1 Iter. 2 Iter. 3 Iter. 5 Iter. 10

O1 0 0 0 0 0 0
O2 0.0825 0.0856 0.0824 0.0829 0.0834 0.0834
O3 0.1704 0.1641 0.1736 0.1699 0.1715 0.1715
O4 0.2479 0.2253 0.2528 0.2473 0.2490 0.2491
O5 0.3108 0.2750 0.3172 0.3102 0.3121 0.3121
O6 0.3420 0.2994 0.3488 0.3414 0.3433 0.3433
O7 0.3290 0.2819 0.3308 0.3272 0.3302 0.3303
O8 0.3669 0.2963 0.3593 0.3625 0.3681 0.3684
O9 0.3924 0.3126 0.3832 0.3878 0.3936 0.3939
O10 0.3507 0.2858 0.3447 0.3470 0.3521 0.3523
O11 0.3362 0.2763 0.3316 0.3330 0.3376 0.3379
O12 0.3442 0.2798 0.3375 0.3401 0.3455 0.3459
O13 0.2930 0.2467 0.2910 0.2906 0.2946 0.2948
O14 0.2553 0.2207 0.2555 0.2535 0.2570 0.2572
O15 0.2298 0.2037 0.2310 0.2284 0.2313 0.2315
O16 0.1916 0.1783 0.1941 0.1908 0.1929 0.1929
O17 0.2530 0.2197 0.2552 0.2527 0.2560 0.2562
O18 0.2516 0.2190 0.2550 0.2523 0.2555 0.2556
O19 0.2501 0.2183 0.2548 0.2517 0.2548 0.2549
O20 0.2917 0.2508 0.2969 0.2933 0.2964 0.2966
O21 0.2082 0.1852 0.2117 0.2095 0.2120 0.2120
O22 0.1663 0.1520 0.1686 0.1673 0.1691 0.1691
O23 0.1244 0.1188 0.1255 0.1251 0.1262 0.1262
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[14] G. Panasenko. Initiation à l’Analyse Numérique. Editions Universitaires Eu-
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