In papers [1,2] there were consider different assumptions for averaging methods along the vertical coordinate.These methods were applied for the mathematical simulation of the mass transfer process in multilayered underground systems. A specific feature of these problems is that it is necessity to solve the 3‐D initial‐boundary‐value problems for parabolic type partial differential equations of second order with piece‐wise parameters in multilayer domain.Therefore here an effective finite‐difference method for solving a problem of the above type is developed.This method may be considered as a generalization of the method of finite volumes [3] for the layered systems. In the case of constant piece‐wise coefficients we obtain the exact discrete approximation of steady‐state 1‐D boundary‐value problem.This procedure allows to reduce the 3‐D problem to a system of 2‐D problems and the 2‐D problem to a system of 1‐D problems.
Kalis, H. (1997). Effective finite‐difference methods for the solutions of filtration problems in multilayer domains. Mathematical Modelling and Analysis, 2(1), 84-91. https://doi.org/10.3846/13926292.1997.9637071
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.