In this paper we establish local existence of solutions for a new model to describe the propagation of an internal wave propagating at the interface of two immiscible fluids with constant densities, contained at rest in a long channel with a horizontal rigid top and bottom. We also introduce a spectral-type numerical scheme to approximate the solutions of the corresponding Cauchy problem and perform a complete error analysis of the semidiscrete scheme.
Grajales, J. C. M. (2014). Existence and Numerical Approximation of Solutions of an Improved Internal Wave Model. Mathematical Modelling and Analysis, 19(3), 309-333. https://doi.org/10.3846/13926292.2014.924039
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.