Share:


Genetic algorithm-based calibration of reduced order galerkin models

    Witold Stankiewicz Affiliation
    ; Robert Roszaka Affiliation
    ; Marek Morzyńskia Affiliation

Abstract

Low-dimensional models, allowing quick prediction of fluid behaviour, are key enablers of closed-loop flow control. Reduction of the model's dimension and inconsistency of high-fidelity data set and the reduced-order formulation lead to the decrease of accuracy. The quality of Reduced-Order Models might be improved by a calibration procedure. It leads to global optimization problem which consist in minimizing objective function like the prediction error of the model.


In this paper, Reduced-Order Models of an incompressible flow around a bluff body are constructed, basing on Galerkin Projection of governing equations onto a space spanned by the most dominant eigenmodes of the Proper Orthogonal Decomposition (POD). Calibration of such models is done by adding to Galerkin System some linear and quadratic terms, which coefficients are estimated using Genetic Algorithm.

Keyword : Navier–Stokes equations, dynamical system, numerical analysis

How to Cite
Stankiewicz, W., Roszaka, R., & Morzyńskia, M. (2011). Genetic algorithm-based calibration of reduced order galerkin models. Mathematical Modelling and Analysis, 16(2), 233-247. https://doi.org/10.3846/13926292.2011.579187
Published in Issue
Jun 24, 2011
Abstract Views
491
PDF Downloads
388
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.