For nonlinear eigenvalue problems T(λ)x = 0 satisfying a minmax characterization of its eigenvalues iterative projection methods combined with safeguarded iteration are suitable for computing all eigenvalues in a given interval. Such methods hit their limitations if a large number of eigenvalues is required. In this paper we discuss restart procedures which are able to cope with this problem, and we evaluate them for a rational eigenvalue problem governing vibrations of a fluid‐solid structure.
Betcke, M. M., & Voss, H. (2008). Restarting projection methods for rational eigenproblems arising in fluid‐solid vibrations. Mathematical Modelling and Analysis, 13(2), 171-182. https://doi.org/10.3846/1392-6292.2008.13.171-182
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.