In this paper we investigate a semi-discrete H1 -Galerkin mixed finite element approximation of one kind of nolocal second order nonlinear hyperbolic equation, which is often used to describe vibration of an elastic string. A priori error estimates for the semi-discrete scheme are derived. A fully discrete scheme is constructed and one numerical example is given to verify the theoretical findings.
Chen, F., & Zhou, Z. (2017). An H1 -Galerkin Mixed Finite Element Approximation of a Nonlocal Hyperbolic Equation. Mathematical Modelling and Analysis, 22(5), 643-653. https://doi.org/10.3846/13926292.2017.1346524
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.