In the present paper a two‐dimensional boundary value problem of geomigration taking into account convection transfer, hydrodynamic dispersion, molecular diffusion and absorption is considered. The problem is described by the system of two differential equations for the level of ground water [3] and the concentration of the contaminant in ground water [4]. For numerical solving we used the finite difference schemes taking into account the characteristic properties of the problem. The calculations were produced in conformity with concrete hydro‐geological conditions. The obtained solutions are used for prognosis of contaminant migration in ground water.
Geomigracijos uždavinio matematinis modeliavimas ir skaitiniai metodai
Santrauka. Straipsnyje nagrinėjamas dvimatis kraštinis geomigracijos uždavinys, kai atsižvelgiama į konvekcinį pernešimą, hidrodinaminę dispersiją, molekulinę difuziją. Šis uždavinys aprašomas dviejų diferencialiniu lygčių sistema grunto vandeniui ir užterštumo koncentracijai vandenyje. Šiam uždaviniui spręsti taikomas baigtinių skirtumų metodas atsižvelgiant į uždavinio charakteristines savybes. Skaičiavimai buvo atlikti su konkrečiomis hidrogeologinėmis sąlygomis. Gauti sprendiniai gali būti naudojami prognozuojant užterštumo judėjimą gruntiniame vandenyje.
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.