The approximations of some heat transport problem in a thin plate are based on the finite volume and conservative averaging methods [1,2]. These procedures allow one to reduce the two dimensional heat transport problem described by a partial differential equation to an initial‐value problem for a system of two ordinary differential equations (ODEs) of the first order or to an initial‐value problem for one ordinary differential equations of the first order with one algebraic equation. Solution of the corresponding problems is obtained by using MAPLE routines “gear”, “mgear” and “lsode”.
Paprastas algoritmas šilumos laidumo uždaviniui plokštelėje spręsti
Santrauka. Šilumos laidumo uždavinio plonoje plokštelėje aproksimacija pagrįsta baigtinių tūrių ir konservatyviuoju vidurkinimo metodu. Šie metodai leidžia dvimatį šilumos laidumo uždavinį, aprašoma dalinėmis išvestinėmis, suvesti į dviejų pirmos eilės paprastųjų diferencialinių lygčių sistemą arba į vieną pirmos eilės paprastąją diferencialinę lygtį su papildoma algebrine lygtimi. Atitinkami parastųjų diferencialinių lygčių sprendiniai randami naudojant MAPLE paketą.
Kalis, H., & Kangro, I. (2001). Simple algorithm’s for the calculation of heat transport problem in plate. Mathematical Modelling and Analysis, 6(1), 85-96. https://doi.org/10.3846/13926292.2001.9637148
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.