A pair of non-overlapping perfectly conducting equal disks embedded in a two-dimensional background was investigated by the classic method of images, by Poincar´e series, by use of the bipolar coordinates and by the elliptic functions in the previous works. In particular, successive application of the inversions with respect to circles were applied to obtain the field in the form of a series. For closely placed disks, the previous methods yield slowly convergent series. In this paper, we study the local fields around closely placed disks by the elliptic functions. The problem of small gap is completely investigated since the obtained closed form solution admits a precise asymptotic investigation in terms of the trigonometric functions when the gap between the disks tends to zero. The exact and asymptotic formulae are extended to the case when a prescribed singularity is located in the gap. This extends applications of structural approximations to estimations of the local fields in densely packed fiber composites in various external fields.
Rylko, N. (2015). A Pair of Perfectly Conducting Disks in an External Field. Mathematical Modelling and Analysis, 20(2), 273-288. https://doi.org/10.3846/13926292.2015.1022236
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.